期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
1
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
基于混合孪生支持向量机的径流区间预测 被引量:2
2
作者 冯仲恺 付新月 +4 位作者 纪国良 刘亚新 牛文静 黄海燕 杨涛 《人民长江》 北大核心 2024年第4期95-102,117,共9页
径流具有非线性和随机性特征,单一点预测模型难以精确刻画和描述径流演化过程。为此,提出了一种可有效量化径流波动范围的智能区间预测方法。首先采用自适应噪声完备集合经验模态分解将非线性径流序列划分为若干子序列,并采用样本熵方... 径流具有非线性和随机性特征,单一点预测模型难以精确刻画和描述径流演化过程。为此,提出了一种可有效量化径流波动范围的智能区间预测方法。首先采用自适应噪声完备集合经验模态分解将非线性径流序列划分为若干子序列,并采用样本熵方法重构得到修正序列;其次以孪生支持向量机为基础,分别对复杂度较高的子序列构建区间预测模型、复杂度较低的子序列建立点预测模型,同时采用鲸鱼优化方法寻求满意的模型参数组合;最后将各子模型的预测结果叠加得到最终的预测区间。结果表明:所提方法具有良好的稳健性和可靠性,在点预测、区间预测等不同场景、不同预见期的性能指标均优于对比模型;如预见期为3 d时,对于黄河流域唐乃亥水文站,所得预测区间具有较高的可靠度与清晰度,其预测区间覆盖率PICP值为98.30%,预测区间平均宽度PINAW值为0.0792,可靠度、清晰度分别平均提高了9.47%和32.66%。研究成果可为智能化径流预测提供行之有效的方法。 展开更多
关键词 径流预测 孪生支持向量机 自适应噪声完备集合经验模态分解 鲸鱼优化方法 黄河流域
在线阅读 下载PDF
ε不敏感损失函数支持向量机分类性能研究 被引量:17
3
作者 杨俊燕 张优云 朱永生 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第11期1315-1320,共6页
将原先用于支持向量回归的ε不敏感损失函数引入到支持向量分类中,提出ε不敏感损失函数支持向量分类算法(-εSVC).同标准支持向量分类方法(C-SVC)和最小二乘支持向量分类方法(LS-SVC)相比较,试验结果表明:当赋予参数ε一个足够大的接近... 将原先用于支持向量回归的ε不敏感损失函数引入到支持向量分类中,提出ε不敏感损失函数支持向量分类算法(-εSVC).同标准支持向量分类方法(C-SVC)和最小二乘支持向量分类方法(LS-SVC)相比较,试验结果表明:当赋予参数ε一个足够大的接近于1的值时,-εSVC的分类正确率略低于C-SVC和LS-SVC,但是-εSVC的训练、测试和参数选择的速度要高于C-SVC和LS-SVC.特别是对于大规模数据集,这种优势将更加明显.另外,通过精确选择参数ε的值,-εSVC能够获得比C-SVC和LS-SVC更高的分类正确率,但是训练、测试和参数选择的速度却随着ε的减小而降低. 展开更多
关键词 ε不敏感损失函数 支持向量分类 模式分类 支持向量回归
在线阅读 下载PDF
ε不敏感支持向量回归在化工数据建模中的应用 被引量:6
4
作者 邵信光 杨慧中 石晨曦 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第B11期215-218,共4页
针对化工领域数据建模小样本、不适定性等问题 ,提出了一种用ε不敏感支持向量回归 (ε SVR)方法进行实际过程建模的想法 ,以解决人工神经网络等方法在数据建模中的“过拟合”、泛化性差等问题 .在分析ε SVR特性的基础上 ,用一个非线... 针对化工领域数据建模小样本、不适定性等问题 ,提出了一种用ε不敏感支持向量回归 (ε SVR)方法进行实际过程建模的想法 ,以解决人工神经网络等方法在数据建模中的“过拟合”、泛化性差等问题 .在分析ε SVR特性的基础上 ,用一个非线性函数逼近例子验证了ε SVR在小样本情况下比BP前馈神经网络具有更优良的建模能力 .将ε SVR应用到丙烯腈聚合反应过程质量指标软测量混合模型中 ,仿真和现场运行结果表明ε SVR是一种非常有效的化工数据建模方法 . 展开更多
关键词 ε不敏感支持向量回归 聚丙烯腈 软测量 数据建模
在线阅读 下载PDF
孪生支持向量回归机研究进展 被引量:2
5
作者 丁世飞 张子晨 +2 位作者 郭丽丽 张健 徐晓 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1117-1134,共18页
孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练... 孪生支持向量回归机(Twin Support Vector Regression,TSVR or TWSVR)是一种基于统计学习理论的回归算法,它以结构风险最小化原理为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机的实际风险达到最小,保证了在有限训练样本上得到的小误差分类器对独立测试集的测试误差仍然较小.孪生支持向量回归机通过将线性不可分样本映射到高维特征空间,使得映射后的样本在该高维特征空间内线性可分,保证了其具有较好的泛化性能.孪生支持向量回归机的算法思想基于孪生支持向量机(Twin Support Vector Machine,TWSVM),几何意义是使所有样本点尽可能地处于两条回归超平面的上(下)不敏感边界之间,最终的回归结果由两个超平面的回归值取平均得到.孪生支持向量回归机需求解两个规模较小的二次规划问题(Quadratic Programming Problems,QPPs)便可得到两条具有较小拟合误差的回归超平面,训练时间和拟合精度都高于传统的支持向量回归机(Support Vector Regression,SVR),且其QPPs的对偶问题存在全局最优解,避免了容易陷入局部最优的问题,故孪生支持向量回归机已成为机器学习的热门领域之一.但孪生支持向量回归机作为机器学习领域的一个较新的理论,其数学模型与算法思想都尚不成熟,在泛化性能、求解速度、矩阵稀疏性、参数选取、对偶问题等方面仍存在进一步改进的空间.本文首先给出了两种孪生支持向量回归机的数学模型与几何意义,然后将孪生支持向量回归机的几个常见的改进策略归纳如下.(1)加权孪生支持向量回归机由于孪生支持向量回归机中每个训练样本受到的惩罚是相同的,但每个样本对超平面的影响不同,尤其是噪声和离群值会使算法性能降低,并且在不同位置的训练样本应给予不同的处罚更为合理,因此考虑在孪生支持向量回归机的每个QPP中引入一个加权系数,给予不同位置的训练样本不同程度的惩罚.(2)拉格朗日孪生支持向量回归机由于孪生支持向量回归机的对偶问题中半正定矩阵的逆矩阵可能不存在,若存在,则对偶问题不是严格凸函数,可能存在多个解,因此考虑使用松弛变量的2范数代替原有的1范数,使对偶问题更简单,易于求解.(3)最小二乘孪生支持向量回归机由于孪生支持向量回归机的求解需要在对偶空间进行,得到的解为近似解,考虑通过最小二乘法将原问题的不等式约束转化为等式约束,使得原问题可以在原空间内求解,在很大程度上降低计算时间,提高泛化性能,且不损失精度.(4)v-孪生支持向量回归机通过引入一组参数v1与v2自动调节ε1与ε2的值以控制训练样本的特定部分对两条回归超平面所能造成的最大误差,从而自适应给定数据的结构,提高孪生支持向量回归机的拟合精度.(5)ε-孪生支持向量回归机在孪生支持向量回归机的原问题中引入正则化项以达到结构风险最小化的目的,使对偶问题转化为稳定的正定二次规划问题,并通过SOR求解对偶问题,加快训练速度.(6)孪生参数不敏感支持向量回归机克服参数的选取对孪生支持向量回归机超平面构造的影响,使算法非常适合于存在异方差噪声数据的数据集,训练速度和泛化性能也有提升.本文同时对以上算法的数学模型、改进算法及应用进行了系统地分析与总结,给出了以上算法在9个UCI基准数据集上的回归性能与计算时间,并在模型结构层面逐一分析每个算法的表现与耗时的根本原因.对于其他不便于归类的孪生支持向量回归机改进算法及应用,本文也对其作逐一总结.整体来看,最小二乘孪生支持向量回归机在性能和计算时间方面表现最佳,拉格朗日孪生支持向量回归机、v-孪生支持向量回归机的性能并列次优且计算时间接近,加权孪生支持向量回归机、ε-孪生支持向量回归机和孪生参数不敏感支持向量回归机的性能不理想,但计算时间接近.本文旨在使读者对孪生支持向量回归机的不同改进算法之间的异同点与优缺点产生更深刻的理解与认识,从而将更多优秀的改进策略应用于孪生支持向量回归机,最终为进一步提高孪生支持向量回归机的性能以及扩展孪生支持向量回归机的应用范围提供较为清晰的思路. 展开更多
关键词 孪生支持向量回归机 拟合精度 泛化能力 计算时间
在线阅读 下载PDF
光滑孪生参数化不敏感支持向量回归机 被引量:1
6
作者 黄华娟 韦修喜 周永权 《郑州大学学报(工学版)》 CAS 北大核心 2022年第2期28-34,共7页
作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转... 作为机器学习方法之一的孪生参数化不敏感支持向量回归机(TPISVR)有着简洁的数学模型,良好的学习性能,特别适合于求解带有结构异方差噪声的数据回归问题,然而TPISVR的训练速度较低,训练效率有待提高。TPISVR的传统算法可以归结为通过转化对偶问题的方法求解2个带有不等式约束的二次规划问题,然而这种求解二次规划问题的方法对于样本数目较大的问题将受到时间和内存的制约,这是导致TPISVR训练效率低的关键所在。针对此问题,首先,引入正号函数,将TPISVR的2个二次规划问题转化为2个不可微的无约束优化问题;其次,引入CHKS光滑函数和正则项,对TPISVR模型进行正则化,并对不可微的无约束优化问题进行光滑逼近,从而将不可微的模型转化为可微的无约束优化问题,并用收敛速度快的Newton-Armijo方法求解新模型,提出光滑孪生参数化不敏感支持向量回归机(STPISVR);最后,从理论上证明了STPISVR模型是收敛的,并具有任意阶光滑性。为了验证所提算法的有效性和可行性,对机器学习常用的人工数据集和UCI数据集进行仿真实验。实验结果表明:和其他机器学习方法相比,STPISVR在保证精度不下降的前提下,获得了更高的训练效率。 展开更多
关键词 孪生参数化不敏感支持向量回归机 光滑技术 异方差噪声 NEWTON法 训练效率
在线阅读 下载PDF
无线传感器网络中基于双支持向量回归的分布式定位算法 被引量:1
7
作者 王其华 郭戈 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期2930-2936,共7页
针对无线传感器网络中节点定位误差问题,提出一种基于双支持向量回归的分布式定位算法。在保持锚节点连通性的基础上,以锚节点跳数和位置信息为训练样本。结合拉格朗日法和KKT(Karush-Kuhn-Tuchker)条件,把原问题的优化转化为对偶形式,... 针对无线传感器网络中节点定位误差问题,提出一种基于双支持向量回归的分布式定位算法。在保持锚节点连通性的基础上,以锚节点跳数和位置信息为训练样本。结合拉格朗日法和KKT(Karush-Kuhn-Tuchker)条件,把原问题的优化转化为对偶形式,使用双支持向量回归技术确定跳数信息到节点间距离的映射函数。最后,采用最小二乘法估计待定位节点的位置,在不同锚节点和通信半径的情况下对传感器目标节点进行定位实验测试。实验结果表明:该方法减小了测量误差,能有效提高节点自身定位精度。 展开更多
关键词 无线传感器网络 双支持向量回归 定位算法 跳数
在线阅读 下载PDF
基于SVR的网络安全评价模型的建立与仿真 被引量:2
8
作者 李治国 《电子设计工程》 2018年第13期75-79,共5页
针对目前基于主观评价或基于神经网络的评价方法在网络安全评价模型中存在的不足,文中在建立网络安全评价指标体系的基础上,结合ε不敏感损失函数和支持向量机SVM,建立了一种基于SVR的网络安全评价模型。该模型能够对训练样本进行学习... 针对目前基于主观评价或基于神经网络的评价方法在网络安全评价模型中存在的不足,文中在建立网络安全评价指标体系的基础上,结合ε不敏感损失函数和支持向量机SVM,建立了一种基于SVR的网络安全评价模型。该模型能够对训练样本进行学习和训练,得到SVR适宜的设置参数。经过对校验样本的预测可发现,该模型具有较强的泛化能力,预测精度也较高。其性能远优于目前所知的主观评价和神经网络评价方法,能为相关网络安全评价模型的设计与建立提供参考。 展开更多
关键词 支持向量回归机 网络安全评价 ε不敏感损失函数 支持向量机
在线阅读 下载PDF
ε-支持向量回归的噪声敏感性研究
9
作者 田韶超 黄景涛 李广义 《火力与指挥控制》 CSCD 北大核心 2013年第3期130-132,140,共4页
针对ε-支持向量回归机(ε-SVR)对噪声数据非常敏感的问题,提出应用贝叶斯估计理论,研究数据噪声水平与ε-SVR中不敏感参数ε之间的关系,将ε-SVR的优化问题转换成贝叶斯估计问题,探讨ε-SVR对噪声的敏感性。仿真实验表明:不同强度的噪... 针对ε-支持向量回归机(ε-SVR)对噪声数据非常敏感的问题,提出应用贝叶斯估计理论,研究数据噪声水平与ε-SVR中不敏感参数ε之间的关系,将ε-SVR的优化问题转换成贝叶斯估计问题,探讨ε-SVR对噪声的敏感性。仿真实验表明:不同强度的噪声干扰,回归的效果受到较大影响,选取恰当的不敏感参数ε,能够降低ε-SVR对噪声的敏感性,同时也证明了应用贝叶斯估计理论推导的有效性。 展开更多
关键词 ε-支持向量回归 贝叶斯估计 不敏感参数 敏感性
在线阅读 下载PDF
多项式光滑孪生支持向量回归机
10
作者 黄华娟 丁世飞 《微电子学与计算机》 CSCD 北大核心 2013年第10期5-8,共4页
针对光滑孪生支持向量回归机(Smooth Twin Support Vector Regression,STSVR)中Sigmoid函数逼近精度不高的问题,将正号函数展开为无穷多项式级数,由此得到一族光滑函数.采用该多项式光滑函数逼近孪生支持向量回归机的不可微项,并用Newto... 针对光滑孪生支持向量回归机(Smooth Twin Support Vector Regression,STSVR)中Sigmoid函数逼近精度不高的问题,将正号函数展开为无穷多项式级数,由此得到一族光滑函数.采用该多项式光滑函数逼近孪生支持向量回归机的不可微项,并用Newton-Armijo算法求解相应的模型,提出了多项式光滑孪生支持向量回归机(Polynomial Smooth Twin Support Vector Regression,PSTSVR).不仅从理论上证明了PSTSVR的收敛性和满足任意阶光滑的性能,而且在人工数据集和UCI数据集上的实验表明了PSTSVR比STSVR具有更好的回归性能. 展开更多
关键词 孪生支持向量回归机 多项式 光滑Newton-Armijo算法
在线阅读 下载PDF
基于改进的稀疏最小二乘双子支撑向量回归的数字预失真技术 被引量:2
11
作者 代志江 孔淑曼 +3 位作者 李明玉 蔡天赋 靳一 徐常志 《电子与信息学报》 EI CSCD 北大核心 2023年第2期418-426,共9页
为了补偿大容量卫星通信射频前端的功率放大器的非线性,传统的数字预失真(DPD)模型需要更多的系数和更高的阶次,严重影响预失真前馈路径的资源消耗。为了解决这一问题,该文提出一种基于改进的稀疏最小二乘双子支撑向量回归(ISLSTSVR)的... 为了补偿大容量卫星通信射频前端的功率放大器的非线性,传统的数字预失真(DPD)模型需要更多的系数和更高的阶次,严重影响预失真前馈路径的资源消耗。为了解决这一问题,该文提出一种基于改进的稀疏最小二乘双子支撑向量回归(ISLSTSVR)的低复杂度DPD方法。首先通过构建原空间的决策函数解决最小二乘双子支撑向量回归(LSTSVR)模型解不稀疏的问题;同时引用截断最小二乘损失函数增加模型的鲁棒性;然后采用Nystrom逼近方法得到核矩阵的低秩近似,进一步采用Cholesky分解降低核矩阵的运算复杂度;最后由低秩的核矩阵求得模型稀疏解。实验选用基于单管氮化镓(GaN)器件的宽带AB类功率放大器,以40 MHz的32QAM信号进行激励。预失真实验表明,该方法能在保证模型精度的情况下大幅减少DPD模型系数和计算复杂度,为星载射频前端的预失真技术提供了有效的系数降维思路和方法。 展开更多
关键词 数字预失真 稀疏LSTSVR CHOLESKY分解 功率放大器
在线阅读 下载PDF
基于KNN-TSVR算法的MIMO-OFDM系统信道估计 被引量:4
12
作者 李朔 雷为民 张伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期176-181,242,共7页
为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后... 为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后用K近邻(KNN)算法对训练样本进行预处理,得到赋予各样本的权重,最后由加权TSVR对MIMO-OFDM系统所有位置的信道参数进行插值估计.本文提出的改进的加权TSVR信道估计方法不仅具有TSVR对非线性关系回归的优势,同时引入KNN算法对TSVR进行改进,使得该算法与传统TSVR相比,具有更好的回归性能和抗噪声能力.对非线性MIMO-OFDM信道进行估计的仿真实验结果证实了这一结论. 展开更多
关键词 信道估计 K最近邻(KNN)算法 多进多出(MIMO)系统 正交频分复用(OFDM) 孪生支持向量回归(TSVR)
在线阅读 下载PDF
基于高斯噪声的孪生近端最小二乘支持向量回归模型研究及应用
13
作者 袁秋云 张仕光 +1 位作者 刘士琴 郭双乐 《南京师范大学学报(工程技术版)》 CAS 2022年第4期19-28,共10页
孪生近端最小二乘支持向量回归机(twin proximal least squares support vector regression,TPLSSVR)是在PLSSVR模型的理论基础上结合TSVR模型的双超平面理念而设计的一种新的回归模型.本文利用TPLSSVR模型框架构建了基于高斯噪声的孪... 孪生近端最小二乘支持向量回归机(twin proximal least squares support vector regression,TPLSSVR)是在PLSSVR模型的理论基础上结合TSVR模型的双超平面理念而设计的一种新的回归模型.本文利用TPLSSVR模型框架构建了基于高斯噪声的孪生近端最小二乘支持向量回归模型.该模型利用最小二乘方法,分别加入正则化项b_(1)^(2)、b_(2)_(2),将一个不等式约束问题转化为两个更简单的等式约束问题,提高了模型的泛化能力,有效提升了预测精度.为解决模型的参数选择问题,选用收敛速度快、鲁棒性好的粒子群优化算法对模型参数进行优化选择.将新构建的模型应用于人工数据集和风速数据集,实验结果显示该模型有较好的预测效果. 展开更多
关键词 孪生近端最小二乘支持向量回归机 高斯噪声 风速预测 等式约束
在线阅读 下载PDF
基于稀疏孪生支持向量机的人脸识别 被引量:1
14
作者 宋静 《信息技术》 2020年第7期121-124,共4页
针对人脸识别问题,文中提出了一种稀疏孪生支持向量机(STSVM)模型。在TSVM算法的基础上,通过结合样本的局部密度和全局离散度构造STSVM,并利用局部密度和全局离散度对样本进行删减,实现了TSVM的稀疏化。此外,局部密度的引入使得STSVM对... 针对人脸识别问题,文中提出了一种稀疏孪生支持向量机(STSVM)模型。在TSVM算法的基础上,通过结合样本的局部密度和全局离散度构造STSVM,并利用局部密度和全局离散度对样本进行删减,实现了TSVM的稀疏化。此外,局部密度的引入使得STSVM对噪声不敏感。另一方面,将STSVM算法与“1 vs rest”方法相结合,解决了人脸检测的多类检测问题。最后,在ORL人脸数据集上对文中提出的算法进行验证。实验结果表明,文中提出的STSVM适用于人脸识别,且取得了令人满意的识别率。 展开更多
关键词 人脸识别 孪生支持向量机 稀疏性 噪声不敏感
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部