ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged u...ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.展开更多
This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this ...This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this study. The concentration and turbulent intensity in the multiphase cloud of the solidliquid mixed fuel were obtained by numerical simulation. It was found that the fuel concentration tended to be 0.15 kg/m^3, the turbulence intensity tended to be 7 in 90 ms. The numerical results agree with those measured in the experiment.展开更多
基金Project(2006BAJ04B04)supported by the National Science and Technology Pillar Program in the Eleventh Five-year Plan PeriodProject(2006AA05Z229)supported by the National High Technology Research and Development Program of China+1 种基金Project supportedby the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryProject(06wk3023)supported by Hunan Science and Technology Office
文摘ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.
基金supported by National Key R&D Program of China(No.2016YFC0801800)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute ofTechnology)(No.KFJJ18-03M)
文摘This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this study. The concentration and turbulent intensity in the multiphase cloud of the solidliquid mixed fuel were obtained by numerical simulation. It was found that the fuel concentration tended to be 0.15 kg/m^3, the turbulence intensity tended to be 7 in 90 ms. The numerical results agree with those measured in the experiment.