Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. S...Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.展开更多
Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly ...Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.展开更多
A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin underg...A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved.Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing,aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.11372136)
文摘Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.
基金Supported by the National Natural Science Foundation of Chinathe National Key Research and Development Program of China under Grant No 2016YFA0300203
文摘Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.
基金supported by the National Natural Science Foundation of China(Nos.50905085,91116020)the Aviation Science Foundation of China(No.20100112005)
文摘A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved.Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing,aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.