Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t...Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.展开更多
A full planar tunable band pass resonator is introduced, which is constructed by using novel symmetric step impedance resonator (SIR) and hyperabrupt varactors for wide bandwidth tuning and size reduction. The equiv...A full planar tunable band pass resonator is introduced, which is constructed by using novel symmetric step impedance resonator (SIR) and hyperabrupt varactors for wide bandwidth tuning and size reduction. The equivalent circuit model of the proposed resonator is set up. Theoretical analysis based on transmission line as well as odd and even-mode method is completed. The attractiveness of the approach presented lies in its simplicity. Based on the detailed analysis, a 6 GHz to 10 GHz varactor tuned resonator is designed, fabricated, and measured. It shows wideband tuning ability of 37%. The experimental results of the resonator have a good agreement with the analysis results.展开更多
This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on t...This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on the propagation theory of edge guided modes, the analysis procedure of this structure is introduced. The numerical results demonstrate the tunability of the resonant frequency by changing the DC bias magnetic field applied to the ferrite. In contrast to previous work, the proposed structure is easy to design and fabricate and does not require a chip component.展开更多
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) fi...Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.展开更多
We design and fabricateλ/2 coplanar waveguide NbN resonators,the thickness and length of which are only several nanometers and hundred microns,respectively.The quality factor of such compact resonators can reach up t...We design and fabricateλ/2 coplanar waveguide NbN resonators,the thickness and length of which are only several nanometers and hundred microns,respectively.The quality factor of such compact resonators can reach up to 7.5×10~4 at single photon power level at 30 m K with the resonance frequency around 6.835 GHz.In order to tune the resonant frequency,the resonator is terminated to the ground with a dc-SQUID.By tuning the magnetic flux in the dc-SQUID,the effective inductance of the dc-SQUID is varied,which leads to the change in the resonant frequency of the resonator.The tunability range is more than 30 MHz and the quality factor is about 3×10~3.These compact and tunable NbN resonators have potential applications in the quantum information processing,such as in the precision measurement,coupling and/or reading out the quantum states of qubits.展开更多
We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-re...We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.展开更多
This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magne...This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites,includes the electrical tunable equivalent factor of the piezoelectric layer,and is established by the introduced lumped elements,such as radiation capacitance,radiation inductance,and coupling inductance,according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab.The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources.Finally,the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed.When the deviation angles of the ferrite slab are respectively 0° and45°,the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device.The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results.When the deviation angle is between 0° and 45°,the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result.The comparison results of the paper show that the lumped equivalent circuit model is valid.Further,the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model.The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices.展开更多
Terahertz(THz)radiation has been extensively investigated in recent years due to its potential applications in communication,homeland security,safety inspection,sensing,and imaging.For a common THz system,three part...Terahertz(THz)radiation has been extensively investigated in recent years due to its potential applications in communication,homeland security,safety inspection,sensing,and imaging.For a common THz system,three parts are quite important:THz sources,THz detectors,and THz functional devices.展开更多
The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is ...The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718802 and 2018YFA0209002)the National Natural Science Foundation of China(Grant Nos.62274086,62288101,61971464,62101243,and 11961141002)+3 种基金the Excellent Young Scholar Program of Jiangsu Province,China(Grant Nos.BK20200008 and BK20200060)the Outstanding Postdoctoral Program of Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universitiesthe Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
文摘A full planar tunable band pass resonator is introduced, which is constructed by using novel symmetric step impedance resonator (SIR) and hyperabrupt varactors for wide bandwidth tuning and size reduction. The equivalent circuit model of the proposed resonator is set up. Theoretical analysis based on transmission line as well as odd and even-mode method is completed. The attractiveness of the approach presented lies in its simplicity. Based on the detailed analysis, a 6 GHz to 10 GHz varactor tuned resonator is designed, fabricated, and measured. It shows wideband tuning ability of 37%. The experimental results of the resonator have a good agreement with the analysis results.
文摘This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on the propagation theory of edge guided modes, the analysis procedure of this structure is introduced. The numerical results demonstrate the tunability of the resonant frequency by changing the DC bias magnetic field applied to the ferrite. In contrast to previous work, the proposed structure is easy to design and fabricate and does not require a chip component.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60871049 and 50972024)
文摘Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.
基金Project partially supported by the National Key R&D Program of China(Grant No.2016YFA0301801)the National Natural Science Foundation of China(Grant Nos.11474154 and 61521001)+1 种基金PAPD,Dengfeng Project B of Nanjing Universitythe Fundamental Research Funds for the Central Universities,China(Grant No.14380134)。
文摘We design and fabricateλ/2 coplanar waveguide NbN resonators,the thickness and length of which are only several nanometers and hundred microns,respectively.The quality factor of such compact resonators can reach up to 7.5×10~4 at single photon power level at 30 m K with the resonance frequency around 6.835 GHz.In order to tune the resonant frequency,the resonator is terminated to the ground with a dc-SQUID.By tuning the magnetic flux in the dc-SQUID,the effective inductance of the dc-SQUID is varied,which leads to the change in the resonant frequency of the resonator.The tunability range is more than 30 MHz and the quality factor is about 3×10~3.These compact and tunable NbN resonators have potential applications in the quantum information processing,such as in the precision measurement,coupling and/or reading out the quantum states of qubits.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51225504,61171056,and 91123036)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,China
文摘We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172285,11472259,and 11302217)the Natural Science Foundation of Zhejiang Province,China(Grant No.LR13A020002)
文摘This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites,includes the electrical tunable equivalent factor of the piezoelectric layer,and is established by the introduced lumped elements,such as radiation capacitance,radiation inductance,and coupling inductance,according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab.The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources.Finally,the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed.When the deviation angles of the ferrite slab are respectively 0° and45°,the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device.The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results.When the deviation angle is between 0° and 45°,the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result.The comparison results of the paper show that the lumped equivalent circuit model is valid.Further,the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model.The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices.
文摘Terahertz(THz)radiation has been extensively investigated in recent years due to its potential applications in communication,homeland security,safety inspection,sensing,and imaging.For a common THz system,three parts are quite important:THz sources,THz detectors,and THz functional devices.
基金supported by the National Program on Key Basic Research Project of China under Grant No.2014CB339806Basic Research Key Project under Grant No.12JC1407100+1 种基金Major National Development Project of Scientific Instrument and Equipment under Grant No.2011YQ150021 and No.2012YQ14000504the National Natural Science Foundation of China under Grant No.11174207,No.61138001,No.61205094,and No.61307126
文摘The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.