The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C...The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.展开更多
The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric a...The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric acid(HEDP),and tribasic ammonium citrate(TAC)were investigated by electrochemical techniques,X-ray photoelectron spectrometer(XPS)analysis,nano-scratch tests,AFM measurements,and polishing of Cu-coated blanket wafers.The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions,especially at pH=8.The optimal electrolyte compositions(mass fraction)are 6% HEDP,0.3% TTA and 3% TAC at pH=8.The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential.The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion.The surface topography evolution before and after electrochemical polishing(ECP)illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution,that is,the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate.This understanding is beneficial for optimization of ECMP processes.展开更多
基金Projects(51874017,52174236)supported by the National Natural Science Foundation of China。
文摘The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.
基金Project(50975058)supported by the National Science Foundation of China
文摘The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric acid(HEDP),and tribasic ammonium citrate(TAC)were investigated by electrochemical techniques,X-ray photoelectron spectrometer(XPS)analysis,nano-scratch tests,AFM measurements,and polishing of Cu-coated blanket wafers.The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions,especially at pH=8.The optimal electrolyte compositions(mass fraction)are 6% HEDP,0.3% TTA and 3% TAC at pH=8.The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential.The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion.The surface topography evolution before and after electrochemical polishing(ECP)illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution,that is,the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate.This understanding is beneficial for optimization of ECMP processes.