The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of...An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
以单极子、偶极子和四极子声源为例,研究了在包围声源的四面体等腰三角形测量面上采用等腰三角形扫描路径应用扫描声强法测量声功率的收敛特性,并以扫描声强测量误差为目标函数,以等腰三角形扫描测量面的大小、测量面到声源的距离和扫...以单极子、偶极子和四极子声源为例,研究了在包围声源的四面体等腰三角形测量面上采用等腰三角形扫描路径应用扫描声强法测量声功率的收敛特性,并以扫描声强测量误差为目标函数,以等腰三角形扫描测量面的大小、测量面到声源的距离和扫描线密度为设计变量,应用遗传算法进行了优化.依此优化方法确定测量面的各几何参数,保证了测量精度,提高了测量效率,为快速准确地测量声功率提供了依据.
Abstract:
To measure the measuring surfaces of isosceles triangle from tetrahedron which surround sound source by the method of isosceles triangle path scanning, the monopole source, dipole source and quadrupole source are taken as examples. The scanning sound intensity method can get the convergent feature of sound power. The convergent feature is studied. The error analysis of scanning sound intensity as objective function, the design variable which made up of the sizeof scanning measuring surfaces of isosceles triangle, the distance between measuring surface and sound source, and the density of scanning line, all of which optimized by GA. This optimization determines the geometry parameters of measuring surface, ensures the measuring accuracy, also improves the measuring efficiency . They lays a solid foundation for swiftly and accurately measuring sound power of sound source.展开更多
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
文摘The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
基金supported by the National Natural Science Foundation of China(6157337461503408)
文摘An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
文摘以单极子、偶极子和四极子声源为例,研究了在包围声源的四面体等腰三角形测量面上采用等腰三角形扫描路径应用扫描声强法测量声功率的收敛特性,并以扫描声强测量误差为目标函数,以等腰三角形扫描测量面的大小、测量面到声源的距离和扫描线密度为设计变量,应用遗传算法进行了优化.依此优化方法确定测量面的各几何参数,保证了测量精度,提高了测量效率,为快速准确地测量声功率提供了依据.
Abstract:
To measure the measuring surfaces of isosceles triangle from tetrahedron which surround sound source by the method of isosceles triangle path scanning, the monopole source, dipole source and quadrupole source are taken as examples. The scanning sound intensity method can get the convergent feature of sound power. The convergent feature is studied. The error analysis of scanning sound intensity as objective function, the design variable which made up of the sizeof scanning measuring surfaces of isosceles triangle, the distance between measuring surface and sound source, and the density of scanning line, all of which optimized by GA. This optimization determines the geometry parameters of measuring surface, ensures the measuring accuracy, also improves the measuring efficiency . They lays a solid foundation for swiftly and accurately measuring sound power of sound source.