Dissolution and homogeneous graft copolymerization of cellulose were performed in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) with 2-hydroxyethyl methacrylate. The synthesized AmimCl and cellulose ...Dissolution and homogeneous graft copolymerization of cellulose were performed in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) with 2-hydroxyethyl methacrylate. The synthesized AmimCl and cellulose graft copolymers were characterized by FTIR, ^1 H-NMR and XRD spectroscopy. The results show that AmimCl dissolved cellulose directly by destroying intermolecular and intramolecular hydrogen bonds in cellulose and the crystalline form of cellulose was transformed from cellulose Ⅰ to cellulose Ⅱ after regeneration from AmimCl. The best synthetic condition of the cellulose-graft-P (2-hydroxyethyl methacrylate) was that cellulose 0.5 g, 2-hydroxyethyl methacrylate 3.00 g and initiator ammonium persulfate 0.05 g reacted for 180 min at 60℃; the rate of grafting reached 77.3%.展开更多
Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via...Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.展开更多
In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized b...In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized by radiation technique at low temperature (-78℃) and several kinds of copolymer carriers were obtained. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The etharol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg /( ml·h), which was 4 times as high as that of free cells. In this study, the effect of adding of crosslinking reagent (4G) in copolymer on activity of yeast cells immobilized with the carriers were also studied. It was found that the effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work.展开更多
The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on ...The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by graf...An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications展开更多
Lithium metal batteries are strongly considered as one of the most promising candidates for nextgeneration high-performance battery systems.However,the uncontrollable growth of lithium dendrites and the highly reactiv...Lithium metal batteries are strongly considered as one of the most promising candidates for nextgeneration high-performance battery systems.However,the uncontrollable growth of lithium dendrites and the highly reactive lithium metal result in the severe safety risks and the short lifespan for highenergy-density rechargeable batteries.Here,we demonstrate a hydrophobic and ionically conductive ethylene-vinyl acetate(EVA)copolymer layer can not only endow lithium metal anodes with an air-stable and anti-water surface,but also efficiently suppress the lithium-dendrites growth during the electrochemical cycling process.Therefore,the introduction of the EVA copolymer as a bifunctional protection layer simultaneously improves the anti-water/air performance and electrochemical cycling stability of lithium metal anode.展开更多
Synthesis of a cold flow improver (MAVA-a) for diesel fuel and its effect on solidifying point (SP) and cold filter plugging point (CFPP) of diesel fuels were investigated, The cold flow improver was prepared by...Synthesis of a cold flow improver (MAVA-a) for diesel fuel and its effect on solidifying point (SP) and cold filter plugging point (CFPP) of diesel fuels were investigated, The cold flow improver was prepared by using maleic anhydride (MA) and vinyl acetate (VA) as raw materials, toluene as solvent, dibenzoyl peroxide (BPO) as initiator, through alternating polymerization under nitrogen to obtain a binary-polymer and then through aminolysis by using a higher carbon amine as aminating agent at a temperature of 80 ℃. A cold flow improver was designed and prepared for No. 0 diesel fuel from Zhang Jia-Gang Petrochemical Company according to the contents of n-paraffin and its carbon number distribution in the No. 0 diesel fuel. It was also used together with two kinds of ethene-vinyl acetate copolymer improvers (EVA) separately. The test result showed that the CFPP of the No. 0 diesel fuel could be lowered by 3-5 ℃ when the improver MAVA-a was used. The CFPP was lowered by 8℃ when the improver MAVA-a was used together with EVA-2.展开更多
Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes a...Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes are still limited by the low ionic conductivity,poor interfacial contact with electrodes,narrow electrochemical window and weak mechanical strength.Here,a series of novel block copolymer electrolytes with three-dimensional networks are designed by cross-linked copolymerization of the polyethylene glycol soft segments and hexamethylene diisocyanate trimer hard segments.Their ionic migration performances and interface compatibilities with Li metal anode have been optimized delicately by tailoring the ratio of these functional units.The optimized block copolymer electrolyte has shown an amorphous crystalline structure,a high ionic conductivity of ~5.7×10^(-4)S cm^(-1),high lithium ion transference number(~0.49),wide electrochemical window up to ~4.65 V(vs.Li+/Li) and favorable mechanical strength at 55℃.Furthermore,the enhanced interface compatibility can well support the normal operations of lithium metal batteries using both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes.This study not only paves a new way to develop solid polymer electrolyte with optimizing functional units,but also provides a polymer electrolyte design strategy for the application demand of lithium metal battery.展开更多
We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,len...We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,length and infiltration properties of the NRs on the self-assembly of the composites and the phase transitions occurring in the material.An analysis of the phase diagram was carried out to obtain the formation conditions of sea island structure nanorodbased aggregate,sea island structure nanorod-based dispersion,lamellar structure nanorod-based multilayer arrangement and nanowire structure.Further analysis of the evolution of the domain sizes and the distribution of the nanorod angle microphase structure was performed.Our simulation provides theoretical guidance for the preparation of ordered nanowire structures and a reference to improve the function of a polymer nanocomposite material.展开更多
Solid-state lithium(Li) metal batteries overwhelm the lithium-ion batteries by harvesting high energy from Li metal anode with ultrahigh capacities and gaining excellent safety from solid electrolytes.However,the unco...Solid-state lithium(Li) metal batteries overwhelm the lithium-ion batteries by harvesting high energy from Li metal anode with ultrahigh capacities and gaining excellent safety from solid electrolytes.However,the uncontrollable solvents in solid electrolytes usually aggravate poor interfacial contact with lithium metal anode and deteriorate Li^(+) pathways.Here a copolymeric network-structured ion conductor by rationally integrating cellulose nanofibril as a two-in-one functional material is employed to anchor the solvent.Taking advantages of tightly anchoring of cellulose nanofibril to solvent,the asconstructed quasi-solid polymer-based electrolyte offers rapid Li^(+) transport channels and realizes effective Li-dendrite suppression,which enables high ionic conductivity of 1.93 × 10^(-3)S cm^(-1) at room temperature,long-term Li plating/stripping over 1900 h,and high capacity retention of 99%.This work provides a fresh strategy for creating solid electrolytes that meet both high ionic conductivity and interfacial stability requirements for practical solid-state lithium metal battery.展开更多
基金supported by the 11th Five-Year Plan of the National Scientific and Technological Support Projects of China (Grant No. 2006BAD18B10)the Major Project of Chinese National Programs for Fundamental Research and Development (973 Program) (Grant No. 2010CB732204)
文摘Dissolution and homogeneous graft copolymerization of cellulose were performed in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) with 2-hydroxyethyl methacrylate. The synthesized AmimCl and cellulose graft copolymers were characterized by FTIR, ^1 H-NMR and XRD spectroscopy. The results show that AmimCl dissolved cellulose directly by destroying intermolecular and intramolecular hydrogen bonds in cellulose and the crystalline form of cellulose was transformed from cellulose Ⅰ to cellulose Ⅱ after regeneration from AmimCl. The best synthetic condition of the cellulose-graft-P (2-hydroxyethyl methacrylate) was that cellulose 0.5 g, 2-hydroxyethyl methacrylate 3.00 g and initiator ammonium persulfate 0.05 g reacted for 180 min at 60℃; the rate of grafting reached 77.3%.
基金supported by The National Natural Science Foundation of China(21504039)。
文摘Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.
基金This research projcct was financed by applied base research fund of jiangsu provicial Scicntific and Tcchniquuc Committee from 1989-1991
文摘In this paper, various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) were eopolymerized by radiation technique at low temperature (-78℃) and several kinds of copolymer carriers were obtained. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The etharol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg /( ml·h), which was 4 times as high as that of free cells. In this study, the effect of adding of crosslinking reagent (4G) in copolymer on activity of yeast cells immobilized with the carriers were also studied. It was found that the effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work.
基金Financial support from the National Key Research and Development Program(2016YFB0302403)is gratefully acknowledged.
文摘The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.
文摘An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications
基金supported by the National Key Research and Development Program(2016YFA0202500)National Natural Science Foundation of China(21776019,21808124,51972121)+1 种基金Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2017TQ04C419)Beijing Natural Science Foundation(L182021)。
文摘Lithium metal batteries are strongly considered as one of the most promising candidates for nextgeneration high-performance battery systems.However,the uncontrollable growth of lithium dendrites and the highly reactive lithium metal result in the severe safety risks and the short lifespan for highenergy-density rechargeable batteries.Here,we demonstrate a hydrophobic and ionically conductive ethylene-vinyl acetate(EVA)copolymer layer can not only endow lithium metal anodes with an air-stable and anti-water surface,but also efficiently suppress the lithium-dendrites growth during the electrochemical cycling process.Therefore,the introduction of the EVA copolymer as a bifunctional protection layer simultaneously improves the anti-water/air performance and electrochemical cycling stability of lithium metal anode.
基金Supported by the Basic Research Program of the State Key Laboratory of Heavy Oil Processing (200310) China University of Petroleum,Beijing,China
文摘Synthesis of a cold flow improver (MAVA-a) for diesel fuel and its effect on solidifying point (SP) and cold filter plugging point (CFPP) of diesel fuels were investigated, The cold flow improver was prepared by using maleic anhydride (MA) and vinyl acetate (VA) as raw materials, toluene as solvent, dibenzoyl peroxide (BPO) as initiator, through alternating polymerization under nitrogen to obtain a binary-polymer and then through aminolysis by using a higher carbon amine as aminating agent at a temperature of 80 ℃. A cold flow improver was designed and prepared for No. 0 diesel fuel from Zhang Jia-Gang Petrochemical Company according to the contents of n-paraffin and its carbon number distribution in the No. 0 diesel fuel. It was also used together with two kinds of ethene-vinyl acetate copolymer improvers (EVA) separately. The test result showed that the CFPP of the No. 0 diesel fuel could be lowered by 3-5 ℃ when the improver MAVA-a was used. The CFPP was lowered by 8℃ when the improver MAVA-a was used together with EVA-2.
基金supported financially by the National Key R&D Program of China (Grant No. 2018YFB0104300)Beijing Natural Science Foundation (JQ19003, KZ201910005002 and L182009)+1 种基金National Natural Science Foundation of China (Grants 21875007, 51622202, and 21974007)the Project of Youth Talent Plan of Beijing Municipal Education Commission (CIT&TCD201804013)。
文摘Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes are still limited by the low ionic conductivity,poor interfacial contact with electrodes,narrow electrochemical window and weak mechanical strength.Here,a series of novel block copolymer electrolytes with three-dimensional networks are designed by cross-linked copolymerization of the polyethylene glycol soft segments and hexamethylene diisocyanate trimer hard segments.Their ionic migration performances and interface compatibilities with Li metal anode have been optimized delicately by tailoring the ratio of these functional units.The optimized block copolymer electrolyte has shown an amorphous crystalline structure,a high ionic conductivity of ~5.7×10^(-4)S cm^(-1),high lithium ion transference number(~0.49),wide electrochemical window up to ~4.65 V(vs.Li+/Li) and favorable mechanical strength at 55℃.Furthermore,the enhanced interface compatibility can well support the normal operations of lithium metal batteries using both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes.This study not only paves a new way to develop solid polymer electrolyte with optimizing functional units,but also provides a polymer electrolyte design strategy for the application demand of lithium metal battery.
基金Project supported by the National Natural Science Foundation of China(Grant No.21373131)the Provincial Natural Science Foundation of Shanxi,China(Grant No.2015011004)the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security,China
文摘We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,length and infiltration properties of the NRs on the self-assembly of the composites and the phase transitions occurring in the material.An analysis of the phase diagram was carried out to obtain the formation conditions of sea island structure nanorodbased aggregate,sea island structure nanorod-based dispersion,lamellar structure nanorod-based multilayer arrangement and nanowire structure.Further analysis of the evolution of the domain sizes and the distribution of the nanorod angle microphase structure was performed.Our simulation provides theoretical guidance for the preparation of ordered nanowire structures and a reference to improve the function of a polymer nanocomposite material.
基金financial support from the projects of the National Natural Science Foundation of China (52373074 and 51972121)the Independent Research Project of Maoming Laboratory (2022ZD002)。
文摘Solid-state lithium(Li) metal batteries overwhelm the lithium-ion batteries by harvesting high energy from Li metal anode with ultrahigh capacities and gaining excellent safety from solid electrolytes.However,the uncontrollable solvents in solid electrolytes usually aggravate poor interfacial contact with lithium metal anode and deteriorate Li^(+) pathways.Here a copolymeric network-structured ion conductor by rationally integrating cellulose nanofibril as a two-in-one functional material is employed to anchor the solvent.Taking advantages of tightly anchoring of cellulose nanofibril to solvent,the asconstructed quasi-solid polymer-based electrolyte offers rapid Li^(+) transport channels and realizes effective Li-dendrite suppression,which enables high ionic conductivity of 1.93 × 10^(-3)S cm^(-1) at room temperature,long-term Li plating/stripping over 1900 h,and high capacity retention of 99%.This work provides a fresh strategy for creating solid electrolytes that meet both high ionic conductivity and interfacial stability requirements for practical solid-state lithium metal battery.