Anomalous transports of dipole in alternating electric fields are investigated by means of numerical calculation of its average angular velocity(or current). Our results show that the alternating electric fields can m...Anomalous transports of dipole in alternating electric fields are investigated by means of numerical calculation of its average angular velocity(or current). Our results show that the alternating electric fields can make the dipole exhibit many interesting transport behaviors. There exist current bifurcation and multiple current reversal phenomena about frequency of the alternating electric fields in the system in the absence of constant bias force, while many platforms appear in the curve of its average angular velocity vs. the force, i.e., multiple mobility transitions phenomenon in the presence of the constant force, dependent on frequencies of the alternating electric fields. Further investigation indicates that the multiple mobility transitions are attributed to the traveling forces on the dipole. Intrinsic physical mechanism and conditions for the characteristic dynamical behaviors to occur are also discussed in detail. These findings will possess crucial significance for optimizing heating control in the alternating electric fields.展开更多
Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current los...Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current loss.In this paper,3 D particle-in-cell simulations are conducted with UNPIC-3 d to investigate the current loss mechanism and the influence of the input parameters of the coaxial-disk transition on current loss in an MITL system.The results reveal that the magnetic field non-uniformity causes major current loss in the MITL after the coaxialdisk transition,and the non-uniformity decreases with the distance away from the transition.The uniformity of the magnetic field is improved when increasing the number of feed lines of a linear transformer driver-based accelerator with coaxial-disk transitions.The number of input feed lines should be no less than four in the azimuthal distribution to obtain acceptable uniformity of the magnetic field.To make the ratio of the current loss to the total current of the accelerator less than 2%at peak anode current,the ratio of the current in each feed line to the total current should be no less than 8%.展开更多
The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hy...The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hydrothermal epitaxy method. Among the TMs, the elements of Mn and Co adjacent to Fe are observed to be incorporated into the crystal lattice more easily. It is suggested that the doped TMs mainly occupy the iron sites of the intercalated(Li,Fe)OH layers rather than those of the superconducting Fe Se layers. We find that the critical current density J_(c) can be enhanced much more strongly by the Mn dopant than the other TMs, while the critical temperature T_(c) is weakly affected by the TM doping.展开更多
The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with ...The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.展开更多
Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,s...Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices.展开更多
基金supported by the Research Group of Nonequilibrium Statistics (Grant No. 14078206)Kunming University of Science and Technology, China。
文摘Anomalous transports of dipole in alternating electric fields are investigated by means of numerical calculation of its average angular velocity(or current). Our results show that the alternating electric fields can make the dipole exhibit many interesting transport behaviors. There exist current bifurcation and multiple current reversal phenomena about frequency of the alternating electric fields in the system in the absence of constant bias force, while many platforms appear in the curve of its average angular velocity vs. the force, i.e., multiple mobility transitions phenomenon in the presence of the constant force, dependent on frequencies of the alternating electric fields. Further investigation indicates that the multiple mobility transitions are attributed to the traveling forces on the dipole. Intrinsic physical mechanism and conditions for the characteristic dynamical behaviors to occur are also discussed in detail. These findings will possess crucial significance for optimizing heating control in the alternating electric fields.
基金supported by National Natural Science Foundation of China(Nos.U1530133 and 52007152)the Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR2005)the Youth Innovation Team of Shaanxi Universities。
文摘Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines(MITLs),resulting in disturbed electron flow and non-negligible current loss.In this paper,3 D particle-in-cell simulations are conducted with UNPIC-3 d to investigate the current loss mechanism and the influence of the input parameters of the coaxial-disk transition on current loss in an MITL system.The results reveal that the magnetic field non-uniformity causes major current loss in the MITL after the coaxialdisk transition,and the non-uniformity decreases with the distance away from the transition.The uniformity of the magnetic field is improved when increasing the number of feed lines of a linear transformer driver-based accelerator with coaxial-disk transitions.The number of input feed lines should be no less than four in the azimuthal distribution to obtain acceptable uniformity of the magnetic field.To make the ratio of the current loss to the total current of the accelerator less than 2%at peak anode current,the ratio of the current in each feed line to the total current should be no less than 8%.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303003 and 2016YFA0300300)the National Natural Science Foundation of China(Grant Nos.11834016 and 11888101)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB33010200 and XDB25000000)the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant Nos.QYZDY-SSW-SLH001 and QYZDY-SSW-SLH008)。
文摘The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hydrothermal epitaxy method. Among the TMs, the elements of Mn and Co adjacent to Fe are observed to be incorporated into the crystal lattice more easily. It is suggested that the doped TMs mainly occupy the iron sites of the intercalated(Li,Fe)OH layers rather than those of the superconducting Fe Se layers. We find that the critical current density J_(c) can be enhanced much more strongly by the Mn dopant than the other TMs, while the critical temperature T_(c) is weakly affected by the TM doping.
基金Project supported by the National Natural Science Foundation of China (Grant No 10447116) and the Science Foundation for Post Doctorate of China (Grant No 2005038316).Acknowledgment We would like to thank Professor Z. Pácz for helpful discussion.
文摘The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIP) (2018R1A6A1A03025708)。
文摘Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices.