A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing metho...A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were const...Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.展开更多
Rate-transient analysis(RTA)has been widely applied to extract estimates of reservoir/hydraulic fracture properties.However,the majority of RTA techniques can lead to misdiagnosis of reservoir/fracture information whe...Rate-transient analysis(RTA)has been widely applied to extract estimates of reservoir/hydraulic fracture properties.However,the majority of RTA techniques can lead to misdiagnosis of reservoir/fracture information when the reservoir exhibits reservoir heterogeneity and multiphase flow simultaneously.This work proposes a practical-yet-rigorous method to decouple the effects of reservoir heterogeneity and multiphase flow during TLF,and improve the evaluation of reservoir/fracture properties.A new,general,semi-analytical model is proposed that explicitly accounts for multiphase flow,fractalbased reservoir heterogeneity,anomalous diffusion,and pressure-dependent fluid properties.This is achieved by introducing a new Boltzmann-type transformation,the exponent of which includes reservoir heterogeneity and anomalous diffusion.In order to decouple the effects of reservoir heterogeneity and multiphase flow during TLF,the modified Boltzmann variable allows the conversion of three partial differential equations(PDE's)(i.e.,oil,gas and water diffusion equations)into ordinary differential equations(ODE's)that are easily solved using the Runge-Kutta(RK)method.A modified time-power-law plot is also proposed to estimate the reservoir and fracture properties,recognizing that the classical square-root-of-time-plot is no longer valid when various reservoir complexities are exhibited simultaneously.Using the slope of the straight line on the modified time-power-law plot,the linear flow parameter can be estimated with more confidence.Moreover,because of the new Boltzmann-type transformation,reservoir and fracture properties can be derived more efficiently without the need for defining complex pseudo-variable transformations.Using the new semi-analytical model,the effects of multiphase flow,reservoir heterogeneity and anomalous diffusion on rate-decline behavior are evaluated.For the case of approximately constant flowing pressure,multiphase flow impacts initial oil rate,which is a function of oil relative permeability and well flowing pressure.However,multiphase flow has a minor effect on the oil production decline exponent.Reservoir heterogeneity/anomalous diffusion affect both the initial oil production rate and production decline exponent.The production decline exponent constant is a function of reservoir heterogeneity/anomalous diffusion only.The practical significance of this work is the advancement of RTA techniques to allow for more complex reservoir scenarios,leading to more accurate production forecasting and better-informed capital planning.展开更多
The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importa...The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.展开更多
Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the parti...Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the particular characteristics of flow in low-permeability reservoirs in order to obtain reasonable well test interpretation.At present,non-Darcy flow in low-permeability reservoirs is attracting much attention.In this study,displacement tests were conducted on typical cores taken from low-permeability reservoirs.Two dimensionless variables were introduced to analyze the collected experimental data.The results of the dimensionless analysis show whether non-Darcy flow happens or not depends on the properties of fluid and porous media and the pressure differential.The combination of the above three parameters was named as dimensionless criteria coefficient(DCC).When the value of the DCC was lower than a critical Reynolds number(CRN),the flow could not be well described by Darcy's law(so-called non-Darcy flow),when the DCC was higher than CRN,the flow obeyed Darcy's law.Finally,this paper establishes a transient mathematical model considering Darcy flow and non-Darcy flow in low-permeability reservoirs,and proposes a methodology to solve the model.The solution technique,which is based on the Boltzmann transformation,is well suited for solving the flow model of low-permeability reservoirs.Based on the typical curves analysis,it was found that the pressure and its derivative curves were determined by such parameters as non-Darcy flow index and the flow characteristics.The results can be used for well test analysis of low-permeability reservoirs.展开更多
As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect a...As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.展开更多
In this paper, we perform an unprotected partial flow blockage analysis of the hottest fuel assembly in the core of the SNCLFR-100 reactor, a 100 MW_(th) modular natural circulation lead-cooled fast reactor, developed...In this paper, we perform an unprotected partial flow blockage analysis of the hottest fuel assembly in the core of the SNCLFR-100 reactor, a 100 MW_(th) modular natural circulation lead-cooled fast reactor, developed by University of Science and Technology of China. The flow blockage shall cause a degradation of the heat transfer between the fuel assembly and the coolant potentially,which can eventually result in the clad fusion. An analysis of core blockage accidents in a single assembly is of great significance for LFR. Such scenarios are investigated by using the best estimation code RELAP5. Reactivity feedback and axial power profile are considered. The crosssectional fraction of blockage, axial position of blockage,and blockage-developing time are discussed. The cladding material failure shall be the biggest challenge and shall be a considerable threat for integrity of the fuel assembly if the cross-sectional fraction of blockage is over 94%. The blockage-developing time only affects the accident progress. The consequence will be more serious if the axial position of a sudden blockage is closer to the core outlet.The method of analysis procedure can also be applied to analyze similar transient behaviors of other fuel-type reactors.展开更多
井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,...井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,推导出一个特定形式的能量方程,再联立现有的连续方程、运动方程,得到一个新方程组,并利用特征线法(method of characteristics,MOC)结合MATLAB软件对新方程组进行计算求解.若干恒温条件与2种连续变温条件下的仿真结果显示,新方程组均比旧方程组求解精度高,验证了所推导的能量方程的合理性与准确性,证明其能用于恒温与变温环境下液压管线内流体流动问题的计算求解,进而推广至智能完井系统液压控制管线等问题的计算求解,对智能完井井下流量控制阀开启状态进行判断.研究结果可为智能完井系统液压控制等研究提供参考.展开更多
基金Supported by the CNPC Major Scientific and Technological Project(2019B-3204)PetroChina Major Scientific and Technological Project(kt2020-16-01)。
文摘A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
文摘Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.
基金The authors would like to acknowledge financial support provided by National Natural Science Foundation of China(No.52074338)We are also grateful to the support of the National Key R&D Program of China(No.2019YFA0708700)+1 种基金National Key Basic Research Program of China(20CX06071A)Bin Yuan would like to thank for the support of Shandong Mountain Tai Scholar Program.Chris Clarkson would like to acknowledge funding support from an NSERC Alliance grant(ALLRP 548652-19)for research related to the topic of this paper.
文摘Rate-transient analysis(RTA)has been widely applied to extract estimates of reservoir/hydraulic fracture properties.However,the majority of RTA techniques can lead to misdiagnosis of reservoir/fracture information when the reservoir exhibits reservoir heterogeneity and multiphase flow simultaneously.This work proposes a practical-yet-rigorous method to decouple the effects of reservoir heterogeneity and multiphase flow during TLF,and improve the evaluation of reservoir/fracture properties.A new,general,semi-analytical model is proposed that explicitly accounts for multiphase flow,fractalbased reservoir heterogeneity,anomalous diffusion,and pressure-dependent fluid properties.This is achieved by introducing a new Boltzmann-type transformation,the exponent of which includes reservoir heterogeneity and anomalous diffusion.In order to decouple the effects of reservoir heterogeneity and multiphase flow during TLF,the modified Boltzmann variable allows the conversion of three partial differential equations(PDE's)(i.e.,oil,gas and water diffusion equations)into ordinary differential equations(ODE's)that are easily solved using the Runge-Kutta(RK)method.A modified time-power-law plot is also proposed to estimate the reservoir and fracture properties,recognizing that the classical square-root-of-time-plot is no longer valid when various reservoir complexities are exhibited simultaneously.Using the slope of the straight line on the modified time-power-law plot,the linear flow parameter can be estimated with more confidence.Moreover,because of the new Boltzmann-type transformation,reservoir and fracture properties can be derived more efficiently without the need for defining complex pseudo-variable transformations.Using the new semi-analytical model,the effects of multiphase flow,reservoir heterogeneity and anomalous diffusion on rate-decline behavior are evaluated.For the case of approximately constant flowing pressure,multiphase flow impacts initial oil rate,which is a function of oil relative permeability and well flowing pressure.However,multiphase flow has a minor effect on the oil production decline exponent.Reservoir heterogeneity/anomalous diffusion affect both the initial oil production rate and production decline exponent.The production decline exponent constant is a function of reservoir heterogeneity/anomalous diffusion only.The practical significance of this work is the advancement of RTA techniques to allow for more complex reservoir scenarios,leading to more accurate production forecasting and better-informed capital planning.
基金supported by the National Natural Science Foundation of China (Grant Nos.40872097 and 41272161)the Major National Science & Technology Program (Grant Nos.2011ZX05006-005 and 2011ZX05006-006)partly funded by the State Key Laboratory for Petroleum Resource and Prospecting (Grant No.KYJJ2012-01-12)
文摘The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.
基金supported by the National Natural Science Foundation of China(Grant No.40974055)the National Key Technology R&D Program in the 11th Five-Year Plan Period(Grant No.2008ZX05030-005-03)
文摘Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the particular characteristics of flow in low-permeability reservoirs in order to obtain reasonable well test interpretation.At present,non-Darcy flow in low-permeability reservoirs is attracting much attention.In this study,displacement tests were conducted on typical cores taken from low-permeability reservoirs.Two dimensionless variables were introduced to analyze the collected experimental data.The results of the dimensionless analysis show whether non-Darcy flow happens or not depends on the properties of fluid and porous media and the pressure differential.The combination of the above three parameters was named as dimensionless criteria coefficient(DCC).When the value of the DCC was lower than a critical Reynolds number(CRN),the flow could not be well described by Darcy's law(so-called non-Darcy flow),when the DCC was higher than CRN,the flow obeyed Darcy's law.Finally,this paper establishes a transient mathematical model considering Darcy flow and non-Darcy flow in low-permeability reservoirs,and proposes a methodology to solve the model.The solution technique,which is based on the Boltzmann transformation,is well suited for solving the flow model of low-permeability reservoirs.Based on the typical curves analysis,it was found that the pressure and its derivative curves were determined by such parameters as non-Darcy flow index and the flow characteristics.The results can be used for well test analysis of low-permeability reservoirs.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-002,2016ZX05028-001,2016ZX05024-005)
文摘As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.
文摘In this paper, we perform an unprotected partial flow blockage analysis of the hottest fuel assembly in the core of the SNCLFR-100 reactor, a 100 MW_(th) modular natural circulation lead-cooled fast reactor, developed by University of Science and Technology of China. The flow blockage shall cause a degradation of the heat transfer between the fuel assembly and the coolant potentially,which can eventually result in the clad fusion. An analysis of core blockage accidents in a single assembly is of great significance for LFR. Such scenarios are investigated by using the best estimation code RELAP5. Reactivity feedback and axial power profile are considered. The crosssectional fraction of blockage, axial position of blockage,and blockage-developing time are discussed. The cladding material failure shall be the biggest challenge and shall be a considerable threat for integrity of the fuel assembly if the cross-sectional fraction of blockage is over 94%. The blockage-developing time only affects the accident progress. The consequence will be more serious if the axial position of a sudden blockage is closer to the core outlet.The method of analysis procedure can also be applied to analyze similar transient behaviors of other fuel-type reactors.
文摘井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,推导出一个特定形式的能量方程,再联立现有的连续方程、运动方程,得到一个新方程组,并利用特征线法(method of characteristics,MOC)结合MATLAB软件对新方程组进行计算求解.若干恒温条件与2种连续变温条件下的仿真结果显示,新方程组均比旧方程组求解精度高,验证了所推导的能量方程的合理性与准确性,证明其能用于恒温与变温环境下液压管线内流体流动问题的计算求解,进而推广至智能完井系统液压控制管线等问题的计算求解,对智能完井井下流量控制阀开启状态进行判断.研究结果可为智能完井系统液压控制等研究提供参考.