Distribution networks in China and several other countries are predominantly neutral inefficiently grounding systems(NIGSs),and more than 80%of the faults in distribution networks are single-phase-to-ground(SPG)faults...Distribution networks in China and several other countries are predominantly neutral inefficiently grounding systems(NIGSs),and more than 80%of the faults in distribution networks are single-phase-to-ground(SPG)faults.Because of the weak fault current and imperfect monitoring equipment configurations,methods used to determine the faulty line secti ons with SPG faults in NIGSs are in effective.The developme nt and application of distributi on-level phasor measurement units(PMUs)provide further comprehensive fault information for fault diagnosis in a distribution network.When an SPG fault occurs,the transient energy of the faulted line section tends to be higher than the sum of the transient energies of other line sections.In this regard,transient energy-based fault location algorithms appear to be a promising resolution.In this study,a field test plan was designed and implemented for a 10 kV distribution network.The test results dem on strate the effective ness of the transient en ergy-based SPG locati on method in practical distributi on networks.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which ...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.展开更多
基金National Key R&D Program of China(2017YFB0902800)Science and Technology Project of State Grid Corporation of China(52094017003D)supported this work.
文摘Distribution networks in China and several other countries are predominantly neutral inefficiently grounding systems(NIGSs),and more than 80%of the faults in distribution networks are single-phase-to-ground(SPG)faults.Because of the weak fault current and imperfect monitoring equipment configurations,methods used to determine the faulty line secti ons with SPG faults in NIGSs are in effective.The developme nt and application of distributi on-level phasor measurement units(PMUs)provide further comprehensive fault information for fault diagnosis in a distribution network.When an SPG fault occurs,the transient energy of the faulted line section tends to be higher than the sum of the transient energies of other line sections.In this regard,transient energy-based fault location algorithms appear to be a promising resolution.In this study,a field test plan was designed and implemented for a 10 kV distribution network.The test results dem on strate the effective ness of the transient en ergy-based SPG locati on method in practical distributi on networks.
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.