期刊文献+
共找到85,388篇文章
< 1 2 250 >
每页显示 20 50 100
基于Transformer的时间序列预测方法综述 被引量:4
1
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于Transformer模型的时序数据预测方法综述 被引量:13
2
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 transformer模型
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
3
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 transformER 注意力模块 梯度融合
在线阅读 下载PDF
基于改进Transformer结构的电力绝缘子运动模糊图像复原网络 被引量:1
4
作者 李鹏 常乐 +2 位作者 覃发富 孟庆伟 陈继明 《电网技术》 北大核心 2025年第6期2623-2631,I0143-I0146,共13页
针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的... 针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的复原需求,在Transformer网络结构上引入条带注意力模块,结合卷积神经网络,在减小内存空间需求和不依赖大量训练数据的同时实现高效的模糊绝缘子图像复原;同时,在网络目标函数中引入对比学习损失,充分地挖掘和利用清晰与模糊电力绝缘子图像的关联信息。构建运动模糊绝缘子图像数据集进行图像复原与缺陷检测实验,结果表明,该文的运动模糊绝缘子图像复原方法在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structure similarity index measure,SSIM)这两个指标上均高于Deblur GAN-v2、MIMO-UNet等主流算法,使用目标检测算法YOLOv5和YOLOv7对去模糊前后的绝缘子进行定位与自爆缺陷检测后显示该文方法在提升高压输电线路巡检任务中绝缘子定位与缺陷检测的准确率上具有实际应用意义。 展开更多
关键词 运动模糊图像复原 transformER 对比学习 绝缘子及缺陷检测
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测 被引量:5
5
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 transformER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于改进Swin Transformer的人脸活体检测 被引量:2
6
作者 王旭光 卜辰宇 时泽宇 《中国测试》 北大核心 2025年第6期31-39,共9页
随着人脸识别技术的发展,人脸活体检测作为人脸识别系统的安全保障变得更加重要。但当前主流的人脸活体检测模型仅针对特定的检测场景及欺诈攻击方式,面对未知攻击的鲁棒性和泛化能力较差。为此,该文提出一种改进的Swin Transformer模型... 随着人脸识别技术的发展,人脸活体检测作为人脸识别系统的安全保障变得更加重要。但当前主流的人脸活体检测模型仅针对特定的检测场景及欺诈攻击方式,面对未知攻击的鲁棒性和泛化能力较差。为此,该文提出一种改进的Swin Transformer模型,即CDCSwin-T(central difference convolution Swin Transformer)模型。该模型以Swin Transformer为主干,利用其滑动窗口注意力机制提取人脸全局信息,同时引入中心差分卷积(central difference convolution,CDC)模块提取人脸局部信息,加强主干模型捕获真假人脸差异的能力,从而增强其面对未知攻击的鲁棒性;另外在主干模型中引入瓶颈注意力模块,引导模型关注人脸关键信息,加速模型训练;最终将主干模型不同阶段的多尺度信息进行自适应融合,进一步提升该文模型的泛化能力。CDCSwin-T模型在OULU-NPU数据集4个协议上的平均分类错误率(ACER)分别为0.2%,1.1%,(1.1±0.6)%,(2.8±1.4)%,在CASIA-MFSD和REPLAYATTACK数据集跨库测试上的半错误率(HTER)分别为14.1%,22.9%,均优于当前的主流模型,表明其面对未知攻击的鲁棒性和泛化能力均有所提升。 展开更多
关键词 人脸活体检测 Swin transformer 瓶颈注意力模块 特征融合
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:2
7
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积transformer 深度神经网络
在线阅读 下载PDF
基于Transformer和多关系图卷积网络的行人轨迹预测 被引量:3
8
作者 刘桂红 周宗润 孟祥福 《计算机科学与探索》 北大核心 2025年第5期1353-1364,共12页
在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题... 在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题,提出了一种基于Transformer和多关系图卷积网络(GCN)的行人轨迹预测模型。该模型由交互捕获模块、锚点控制模块和轨迹修正补全模块构成。交互捕获模块由T-Transformer和多关系图卷积网络组成,分别提取每个行人在时间序列和空间序列上的运动特征,并结合锚点控制模块推断行人的中间目的地以减少递归累计误差,由修正补全模块进行最终轨迹细化。在提取特征时添加逆关系可得到更为优化的结果,使用高斯剪枝减少虚假路径的生成也可提高模型效率。在ETH与UCY数据集上的实验结果表明,在平均位移误差(ADE)和最终位移误差(FDE)方面,该模型具有比现有大部分主流模型更好的性能。由于该模型在行人轨迹预测上的出色性能,可避免不必要的轨迹变更和碰撞风险,为行人轨迹预测应用提供了更为可能的解决方案。 展开更多
关键词 T-transformer 图卷积网络(GCN) 锚点控制 行人轨迹预测
在线阅读 下载PDF
基于时序二维变换和多尺度Transformer的电能质量扰动分类方法 被引量:1
9
作者 王守相 李慧强 +3 位作者 赵倩宇 郭陆阳 王同勋 王洋 《电力系统自动化》 北大核心 2025年第7期198-207,共10页
随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利... 随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利用时序二维变换将一维PQD时间序列转换为一组基于多个周期的二维张量,以实现在二维空间中深入挖掘PQD信号中所包含的特征信息。然后,通过多尺度Transformer编码器模块提取PQD信号的多尺度特征图,利用多尺度Transformer解码器模块对多尺度特征图进行拼接和特征融合,有效合并在不同尺度上提取的特征图。最后,通过全连接层和Softmax分类器完成PQD分类任务。为验证所提方法的有效性,建立了含24种PQD的数据集对模型进行测试,结果表明所提方法对PQD信号具有较高的分类准确率和噪声鲁棒性。 展开更多
关键词 电能质量 扰动 分类 时序二维变换 多尺度transformer 特征提取 特征融合
在线阅读 下载PDF
融合Gabor滤波与Transformer的图像水印方法 被引量:1
10
作者 张天骐 谭霜 +1 位作者 沈夕文 唐娟 《信号处理》 北大核心 2025年第4期694-705,共12页
图像水印在数字版权保护和身份验证领域中具有关键意义,是保护图像信息安全和确保数据可信性的重要技术手段。目前,大多数已发表的基于深度学习的图像水印方法都是基于卷积神经网络设计的,此类方法存在无法充分捕捉图像的全局信息和细... 图像水印在数字版权保护和身份验证领域中具有关键意义,是保护图像信息安全和确保数据可信性的重要技术手段。目前,大多数已发表的基于深度学习的图像水印方法都是基于卷积神经网络设计的,此类方法存在无法充分捕捉图像的全局信息和细节信息,以及忽略图像高频信息具备稳定和不可感知特点等问题,为了克服上述问题,该论文提出一种融合Gabor滤波与Transformer的图像水印模型。该模型由嵌入网络、提取网络和判别网络组成:在嵌入网络设计了水印信息处理模块对水印信息引入冗余和扩展操作,以增加水印信息在传输过程中的鲁棒性;在嵌入网络引入Gabor滤波的思想在特征提取模块通过卷积分支来捕捉局部特征,通过Transformer分支捕捉全局信息,来充分挖掘图像的稳定特征;在提取网络中融合标准卷积和差分卷积,来准确感知图像的细微信息,进而提高水印的提取精度;引入判别网络与嵌入网络形成对抗训练关系,评估生成水印图像的真实性和质量,从而提升嵌入网络生成水印图像的视觉质量。分别在COCO、ImageNet和VOC2012数据集下进行综合对比实验,结果表明,该文方法针对不可感知性和鲁棒性,相比于相关水印模型取得了更优的指标,具有较为突出的增强性能与泛化能力。此外,还进行了相关的消融实验,结果进一步验证了该模型的可靠性和有效性。 展开更多
关键词 图像水印 不可感知 鲁棒性 卷积神经网络 transformER
在线阅读 下载PDF
基于转置Transformer模型的电化学储能自适应SOH估计方法 被引量:1
11
作者 李鹏 葛儒哲 +3 位作者 董存 孙树敏 张元欣 王士柏 《高电压技术》 北大核心 2025年第6期2945-2953,I0015,共10页
为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因... 为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因子。其次,将容量退化分解为退化趋势部分和容量再生部分,利用线性回归模型预测电池容量的退化趋势,利用转置Transformer模型估计电池容量再生部分,两部分组合以获得电池容量退化的估计结果。最后,利用注意力权重对模型赋予可解释性。研究结果表明:此方法在NASA锂电池老化数据集上的仿真实验中,预测误差明显小于其他时序预测模型,验证了所提方法的预测精确性与可靠性。论文为电池健康状态精确估计的进一步深入研究提供了参考。 展开更多
关键词 锂离子电池 健康状态 深度学习 注意力机制 转置transformer模型 可解释性
在线阅读 下载PDF
基于Transformer-FNN和无人机高光谱遥感技术的棉花黄萎病危害等级分类研究 被引量:1
12
作者 廖娟 梁业雄 +7 位作者 姜锐 邢赫 何欣颖 王辉 曾浩求 何松炜 唐赛欧 罗锡文 《农业机械学报》 北大核心 2025年第2期240-251,共12页
针对目前使用无人机识别棉花黄萎病危害等级时,光谱数据冗余度高和传统机器学习模型识别精度不足等问题,采用无人机搭载Nano-Hyperspec高光谱成像仪采集棉田高光谱图像,通过探究棉花冠层对不同黄萎病危害等级的光谱响应特征,利用最优植... 针对目前使用无人机识别棉花黄萎病危害等级时,光谱数据冗余度高和传统机器学习模型识别精度不足等问题,采用无人机搭载Nano-Hyperspec高光谱成像仪采集棉田高光谱图像,通过探究棉花冠层对不同黄萎病危害等级的光谱响应特征,利用最优植被指数组合建立一种适用于黄萎病危害等级分类的监测模型,实现棉花黄萎病危害等级的精准分类。首先,利用最小冗余最大相关算法(Minimum redundancy maximum relevance,mRMR)对17种潜在的植被指数和270个光谱波段进行特征重要性排序,将mRMR筛选得到的特征,通过逐步递增分组的方式输入至极限梯度提升模型(eXtreme gradient boosting,XGBoost),确定与黄萎病危害等级相关性最高的植被指数和光谱特征波段。然后,基于Transformer架构和前馈神经网络(Feedforward neural network,FNN)构建Transformer-FNN棉花黄萎病危害等级分类模型,将植被指数与光谱特征波段输入Transformer-FNN模型进行分类识别,对比了植被指数与光谱特征波段对棉花黄萎病危害等级分类识别的准确性。最后,利用后向传播神经网络(Back propagation neural network,BPNN)、Transformer和支持向量机(Support vector machine,SVM)构建棉花黄萎病危害等级分类模型,并对这4种分类模型进行精度验证与对比分析。结果表明:棉花黄萎病等级分类的最优植被指数组合为MSR和TVI,最优特征波段组合为430、439、488、566、697、722、742、764、769、782、822、831、858、873、878、893、909、985 nm。基于Transformer-FNN模型,植被指数对黄萎病危害等级的总体分类精度为95.6%,较光谱特征波段的总体分类精度89.4%提高6.2个百分点。基于植被指数,Transformer-FNN模型对黄萎病危害等级的分类识别率比BPNN模型提高11.2个百分点,比Transformer模型提高17.2个百分点,比SVM模型提高30.8个百分点。研究提出了一种通过植被指数进行棉花黄萎病高精度监测方法,可为大面积棉花黄萎病精确监测提供有效措施。 展开更多
关键词 棉花黄萎病 transformer-FNN 特征组合 mRMR-XGBoost 高光谱遥感 植被指数
在线阅读 下载PDF
双向自回归Transformer与快速傅里叶卷积增强的壁画修复 被引量:1
13
作者 陈永 张世龙 杜婉君 《湖南大学学报(自然科学版)》 北大核心 2025年第4期1-15,共15页
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer... 针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法. 展开更多
关键词 壁画修复 双向自回归transformer 掩码语言模型 快速傅里叶卷积 语义增强
在线阅读 下载PDF
融合蚁群算法和差分Transformer的农业机器人路径规划研究 被引量:1
14
作者 李娟 张振荣 《中国农机化学报》 北大核心 2025年第7期164-172,共9页
针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法... 针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法中信息素更新方式容易陷入局部最优、对环境动态变化适应性差的缺陷,设计差分Transformer模型替代原有的信息素更新方法。差分Transformer通过自注意力机制,捕捉路径节点之间的长距离依赖关系和非线性特征,对信息素进行更精准地更新和分配,增强算法对复杂环境的适应能力。实验结果表明,所提出的方法在路径长度、规划时间和避障成功率等指标上均优于传统算法。具体而言,与蚁群算法相比,区域规模为50时,路径长度平均减少16.8%,从平均150 m降至125 m;规划时间缩短23.5%,从平均2.13 s降至1.63 s;避障成功率提高11.2%,达到96.5%。该研究为农业机器人自主导航提供有效的解决方案,具有重要的理论意义和应用价值。 展开更多
关键词 农业机器人 路径规划 蚁群算法 差分transformer 智慧农业
在线阅读 下载PDF
基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络 被引量:1
15
作者 陶永鹏 柏诗淇 周正文 《计算机应用》 北大核心 2025年第7期2378-2386,共9页
脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人... 脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。 展开更多
关键词 网络架构 神经网络架构搜索 脑肿瘤分割 卷积神经网络 transformER
在线阅读 下载PDF
基于GAN和Transformer模型组合的格陵兰地区PWV短时预报方法
16
作者 张胜凯 胡希成 +4 位作者 龚力 雷锦韬 李文浩 马超 肖峰 《大地测量与地球动力学》 北大核心 2025年第9期881-887,893,共8页
基于2010—2018年GPS反演的PWV时间序列数据以及同时期ERA5再分析资料计算的格陵兰地区PWV数据,采用深度学习中的生成对抗网络模型(GAN)和Transformer神经网络模型组合,实现由GPS-PWV数据对格陵兰地区PWV数据的短时预报。采用2019年的E... 基于2010—2018年GPS反演的PWV时间序列数据以及同时期ERA5再分析资料计算的格陵兰地区PWV数据,采用深度学习中的生成对抗网络模型(GAN)和Transformer神经网络模型组合,实现由GPS-PWV数据对格陵兰地区PWV数据的短时预报。采用2019年的ERA5数据对预测结果进行评估,结果表明,模型在大部分地区表现较好,RMSE优于4.5 mm,相关系数大于0.7。在春、秋、冬季,相关系数均高于0.5;受天气剧烈变化影响,夏季少部分时间相关系数略低。该方法能够预测格陵兰地区PWV的空间分布和随时间的变化情况。 展开更多
关键词 生成对抗网络 transformER GPS 格陵兰 PWV 短时预报
在线阅读 下载PDF
基于Transformer多元注意力的钢材表面缺陷视觉检测
17
作者 韩慧健 邢怀宇 +1 位作者 张云峰 张锐 《郑州大学学报(工学版)》 北大核心 2025年第5期69-76,共8页
针对钢材表面缺陷尺度不一和现有检测算法多尺度特征处理能力较差、精度不高的问题,提出一种混合采样与多元注意力协同的钢材表面缺陷检测方法。首先,构建高效通道特征提取主干网络模块,在复杂的钢材表面背景下着重提取缺陷特征;其次,... 针对钢材表面缺陷尺度不一和现有检测算法多尺度特征处理能力较差、精度不高的问题,提出一种混合采样与多元注意力协同的钢材表面缺陷检测方法。首先,构建高效通道特征提取主干网络模块,在复杂的钢材表面背景下着重提取缺陷特征;其次,提出一种双重注意力协同的特征金字塔,扩大网络感受野,更好地捕获多尺度缺陷特征,提高对小目标的检测性能;最后,设计出一种Transformer混合采样策略,动态感知缺陷区域,提高模型的整体检测性能。在NEU-DET数据集上进行实验,结果表明:相较于基准算法DETR,所提改进算法的平均精度均值提高6.1百分点,达到81.4%,提升了模型对钢材表面缺陷检测的精度;此外,检测帧率为44.2帧/s,所提算法在检测速度和检测性能之间取得了较好的平衡。 展开更多
关键词 缺陷检测 注意力机制 transformER 混合采样 DETR
在线阅读 下载PDF
基于CNN-BiLSTM-Transformer的舰船中压直流全电推进系统故障诊断设计
18
作者 张建良 韩涛 季瑞松 《实验技术与管理》 北大核心 2025年第1期11-18,共8页
针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时... 针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时刻下故障信号空间特征的深入提取,以提升故障特征提取的有效性;其次,以双向长短期记忆网络BiLSTM为核心设计多点特征依赖网络,利用门控机制和双向时序学习机制,实现故障信号在多个时刻之间特征依赖关系的有效学习,以提升故障诊断的准确性;然后,以Transformer为核心建立序列特征并行处理网络,通过自注意力机制实现对故障特征上下文关系的精确刻画,进而利用多头注意力机制实现特征序列的并行处理,以提升故障诊断的实时性;最后,设计舰船中压直流全电推进系统故障诊断实验方案,并开展不同故障模式下的诊断性能评估。该文方法在多种故障模式下诊断准确率和实时性均优于现有的主流故障诊断方法,有助于为舰船中压直流全电推进系统的安全运行提供更有力的技术保障。 展开更多
关键词 舰船 中压直流 全电推进系统 故障诊断 transformER
在线阅读 下载PDF
一种3D可变形卷积结合Transformer的视频压缩感知方法
19
作者 杜秀丽 朱金耀 +2 位作者 高星 吕亚娜 邱少明 《计算机科学》 北大核心 2025年第11期150-156,共7页
面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有... 面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有待进一步提高。随着深度学习技术的引入,基于深度学习的分布式视频压缩感知给视频压缩感知重构提供了新思路。因此,结合3D可变形卷积与Transformer构建CS3Dformer网络,利用3D可变形卷积捕获视频的局部特征和时空特征的有效性,学习视频帧间的时空特征;同时,利用Transformer捕获长距离依赖特征的优点,一定程度上弥补了卷积神经网络方法在捕获图像的非局部相似性方面的缺陷,能更好地实现对视频的建模。所提方法是一种端到端的视频压缩感知方法,在多个数据集上的实验结果验证了该方法的有效性。 展开更多
关键词 压缩感知 视频重构 可变形卷积 transformER 卷积神经网络
在线阅读 下载PDF
CNN结合Transformer的高光谱图像和LiDAR数据协同地物分类方法
20
作者 吴海滨 左云逸 +2 位作者 王爱丽 吕浩然 王敏慧 《仪器仪表学报》 北大核心 2025年第8期286-301,共16页
在高光谱图像与LiDAR数据协同分类的研究领域中,尽管CNN和Transformer在图像处理和数据分析中分别展现出对局部特征和全局依赖关系的敏锐洞察力,但二者的协同机制尚未充分挖掘,跨模态特征互补潜力未被有效释放。故提出了一种CNN结合Tran... 在高光谱图像与LiDAR数据协同分类的研究领域中,尽管CNN和Transformer在图像处理和数据分析中分别展现出对局部特征和全局依赖关系的敏锐洞察力,但二者的协同机制尚未充分挖掘,跨模态特征互补潜力未被有效释放。故提出了一种CNN结合Transformer的高光谱图像和LiDAR数据的多模态遥感数据协同地物分类方法。首先,该模型通过主成分分析对高光谱图像进行降维处理以去除光谱的冗余信息,继而利用CNN分层捕获局部纹理特征,同时借助Transformer自注意力机制构建全局光谱-空间表征。然后通过双向特征交互机制,将Transformer输出的全局上下文信息注入CNN特征通道,同时将CNN通道提取的局部细节反馈至Transformer支路,经特征耦合单元实现跨尺度特征对齐,强化模型对高光谱图像全局结构与局部细节的联合提取能力。对于LiDAR数据,采用动态卷积级联模块有效捕获高程信息和上下文关系,最终通过跨模态特征融合模块实现双源数据特征的深度交互与融合,在双模态语义互补中提升复杂地物的分类精度。在Houston2013、Trento和Augsburg这3个公开数据集上的实验表明,该方法总体分类精度分别达到99.85%、99.68%和97.34%,平均准确率分别达到99.87%、99.34%和90.60%,较GLT、HCT等主流方法的分类精度有所提高,充分证明所提方法进行多模态数据协同分类的优势和有效性。 展开更多
关键词 高光谱图像 LIDAR数据 transformER 卷积神经网络 多模态数据
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部