For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfe...Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and c...Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-deterrnining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values, Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.展开更多
According to the chemical equations, the flux and concentration of oxygen required during bacterial lea- ching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the D...According to the chemical equations, the flux and concentration of oxygen required during bacterial lea- ching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m^3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.展开更多
This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impac...Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.展开更多
Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
Systematical analysis on factors affecting the cold end system in power plants was conducted.The optimization model was obtained,which regarded the minimum net coal consumption rate as the objectivefunction,used sever...Systematical analysis on factors affecting the cold end system in power plants was conducted.The optimization model was obtained,which regarded the minimum net coal consumption rate as the objectivefunction,used several objective conditions as the variables,such as flow rate and temperature of the circu-lating water,supercooling degree of the condenser,fouling and air leakage in the condenser.Genetic algo-rithm was employed to optimize the multiple factors affecting the cold end system,and the optimizationconditions for the minimum net coal consumption rate and the corresponding parameters were obtained.Comparison indicated that this genetic algorithm not only can optimize the cold end system quickly and ac-curately,but also can compensate the economic efficiency drop that caused by defects of some parametersthrough automatic adjustment of the parameters.展开更多
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe...To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.展开更多
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province,China
文摘Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.
文摘Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-deterrnining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values, Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.
基金Project(2004CB19206) supported by State Key Fundamental Research and Development Program of China project(50321402) supported by the National Science Fundfor Distinguished Young Scholars of China project(50321402) supported by NationalFund for Creative Research Groups of China
文摘According to the chemical equations, the flux and concentration of oxygen required during bacterial lea- ching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m^3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.
文摘This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
基金Project(2011ZX05000-026-004) supported by the National Science & Technology Specific Program of ChinaProject(2010D-5006-0604) supported by the China National Petroleum Corporation (CNPC) Innovation FoundationProject(51004167) supported by the National Natural Science Foundation of China
文摘Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.
基金National Key Technology Research and Development Program of Ministry of Science and Technology of China(2011BAA04B03)
文摘Systematical analysis on factors affecting the cold end system in power plants was conducted.The optimization model was obtained,which regarded the minimum net coal consumption rate as the objectivefunction,used several objective conditions as the variables,such as flow rate and temperature of the circu-lating water,supercooling degree of the condenser,fouling and air leakage in the condenser.Genetic algo-rithm was employed to optimize the multiple factors affecting the cold end system,and the optimizationconditions for the minimum net coal consumption rate and the corresponding parameters were obtained.Comparison indicated that this genetic algorithm not only can optimize the cold end system quickly and ac-curately,but also can compensate the economic efficiency drop that caused by defects of some parametersthrough automatic adjustment of the parameters.
基金Projects(50634030) supported by the National Natural Science Foundation of China
文摘To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.