Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta...Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.展开更多
As the wireless communication network undergoes continuous expansion,the challenges associated with network management and optimization are becoming increasingly complex.To address these challenges,the emerging artifi...As the wireless communication network undergoes continuous expansion,the challenges associated with network management and optimization are becoming increasingly complex.To address these challenges,the emerging artificial intelligence(AI)and machine learning(ML)technologies have been introduced as a powerful solution.They empower wireless networks to operate autonomously,predictively,ondemand,and with smart functionality,offering a promising resolution to intricate optimization problems.This paper aims to delve into the prevalent applications of AI/ML technologies in the optimization of wireless networks.The paper not only provides insights into the current landscape but also outlines our vision for the future and considerations regarding the development of an intelligent 6G network.展开更多
Plenty of multimedia contents such as traffic images, surveillance video, music and movie will flood into vehicular ad hoc networks. However, content distribution over VANETs is not a easy task, due to the high mobili...Plenty of multimedia contents such as traffic images, surveillance video, music and movie will flood into vehicular ad hoc networks. However, content distribution over VANETs is not a easy task, due to the high mobility of vehicles and intermittent connectivity. Infrastructure-based scheme can relieve the problem, but with a large amount of investment. In this paper, we propose a mobile content distribution scheme based on roadside parking cloud(RPC), which is formed by the parked car on the roadside, and mobile cloud(MC), which is formed by moving cars on the road. According to a trip history model, a mobile car can estimate its following trajectory. When it wants to download the content, gateway node of the RPC will work out a downloading schedule, which tells it how much chunks it can download from which RPCs. Moreover, the helper of the mobile car in mobile cloud would deliver specified chunks to it when there is lack of RPC in the following trip. Simulation results show that cloud-based scheme performs better than inter-vehicle communication approach and cluster-based scheme.展开更多
A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the l...A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.展开更多
Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predi...Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.展开更多
A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the a...A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.展开更多
基金the support of the Fundamental Research Funds for the Air Force Engineering University under Grant No.XZJK2019040。
文摘Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.
基金supported in part by the National Natural Science Foundation of China under Grant No.62201266in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20210335.
文摘As the wireless communication network undergoes continuous expansion,the challenges associated with network management and optimization are becoming increasingly complex.To address these challenges,the emerging artificial intelligence(AI)and machine learning(ML)technologies have been introduced as a powerful solution.They empower wireless networks to operate autonomously,predictively,ondemand,and with smart functionality,offering a promising resolution to intricate optimization problems.This paper aims to delve into the prevalent applications of AI/ML technologies in the optimization of wireless networks.The paper not only provides insights into the current landscape but also outlines our vision for the future and considerations regarding the development of an intelligent 6G network.
基金supported in part by National Science Foundation of China under Grants numbers 61272526,61262081,61370204and 61572113Zhejiang Provincial Natural Science Foundation under Grant number LQ16F02001
文摘Plenty of multimedia contents such as traffic images, surveillance video, music and movie will flood into vehicular ad hoc networks. However, content distribution over VANETs is not a easy task, due to the high mobility of vehicles and intermittent connectivity. Infrastructure-based scheme can relieve the problem, but with a large amount of investment. In this paper, we propose a mobile content distribution scheme based on roadside parking cloud(RPC), which is formed by the parked car on the roadside, and mobile cloud(MC), which is formed by moving cars on the road. According to a trip history model, a mobile car can estimate its following trajectory. When it wants to download the content, gateway node of the RPC will work out a downloading schedule, which tells it how much chunks it can download from which RPCs. Moreover, the helper of the mobile car in mobile cloud would deliver specified chunks to it when there is lack of RPC in the following trip. Simulation results show that cloud-based scheme performs better than inter-vehicle communication approach and cluster-based scheme.
基金Sponsored by the National Defense Pre-Research Foundation of China
文摘A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.
基金supported by the National Natural Science Foundation of China (Nos.61100045,61165013,61003142,60902023,and 61171096)the China Postdoctoral Science Foundation (Nos.20090461346,201104697)+3 种基金the Youth Foundation for Humanities and Social Sciences of Ministry of Education of China (No.10YJCZH117)the Fundamental Research Funds for the Central Universities (Nos.SWJTU09CX035,SWJTU11ZT08)Zhejiang Provincial Natural Science Foundation of China (Nos.Y1100589,Y1080123)the Natural Science Foundation of Ningbo,China (No.2011A610175)
文摘Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.
基金supported by the National Natural Science Foundation of China(Nos.61174180,U1433125)the Jiangsu Province Science Foundation (No.BK20141413)the Chinese Postdoctoral Science Foundation (No.2014M550291)
文摘A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.