期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
基于脉冲神经元膜电位增量的数据分布统计量及批归一化
1
作者 李炜奇 陈云华 +1 位作者 陈平华 朱春佳 《计算机应用研究》 北大核心 2025年第8期2341-2347,共7页
脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时... 脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时间依赖性的问题,通过分析膜电位增量在时间步上的传播,提出按时间步逐步计算膜电位增量的时空积累量;以此为数据分布的统计量分别对各个时间步数据进行归一化,并提出按照指数移动平均计算膜电位增量的时空积累量,形成一种带衰减因子的时空累积批归一化(spatio-temporal attenuation cumulative batch normalization,STBN)方法。在CIFAR-10和CIFAR-100及CIFAR10-DVS数据集上的实验结果表明,所提方法能显著提升网络分类精度并降低时延。特别是在CIFAR-100数据集上仅使用两个时间步就获得了76.30%的精度,相比同类模型的先前最优算法精度提升了3.43%。 展开更多
关键词 脉冲神经网络 批归一化 脉冲时间依赖性 脉冲神经网络训练算法
在线阅读 下载PDF
基于Spiking神经网络的光伏系统发电功率预测 被引量:10
2
作者 陈通 孙国强 +3 位作者 卫志农 李慧杰 CHEUNG KWOK W 孙永辉 《电力系统及其自动化学报》 CSCD 北大核心 2017年第6期7-12,44,共7页
为了提高光伏系统发电功率预测的精度,本文提出一种基于Spiking神经网络(SNN)的预测模型。该神经网络采用精确脉冲时间的编码方式,更接近真实的生物神经系统,具有强大的计算能力。考虑季节类型、天气类型和大气温度等主要影响因素,该模... 为了提高光伏系统发电功率预测的精度,本文提出一种基于Spiking神经网络(SNN)的预测模型。该神经网络采用精确脉冲时间的编码方式,更接近真实的生物神经系统,具有强大的计算能力。考虑季节类型、天气类型和大气温度等主要影响因素,该模型采用灰色关联分析法选取相似日。本文应用实际光伏发电系统的数据分别对基于SNN、BP人工神经网络(BP-ANN)和支持向量机(SVM)的预测模型进行测试和评估。预测结果表明:SNN预测模型相比于BP-ANN和SVM模型有较高的预测精度和较强的适用性,可以为光伏系统发电功率预测提供一种可行方法。 展开更多
关键词 光伏系统 spiking神经网络 SpikeProp算法 相似日选择算法 发电功率预测
在线阅读 下载PDF
脉冲神经网络基准测试及类脑训练框架性能评估
3
作者 胡汪鑫 成英超 +2 位作者 何玉林 黄哲学 蔡占川 《应用科学学报》 北大核心 2025年第1期169-182,共14页
随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,... 随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,即直接替代梯度反向传播训练方法以及从人工神经网络(artificial neural network,ANN)到SNN的转换训练方法分别设计了卷积神经网络和全连接深度神经网络模型,并使用MNIST、FashionMNIST和CIFAR-10基准图像数据集,以训练时间和分类准确率为评估指标,比较了不同类脑训练框架的性能差异。研究结果表明,在SNN直接训练中,类脑训练框架SpikingJelly在训练时间和分类准确率方面均表现优异;而在ANN到SNN的转换训练中,Lava框架实现了最高的分类准确率。 展开更多
关键词 深度学习 脉冲神经网络 类脑训练框架 基准测试 图像分类
在线阅读 下载PDF
将SNN部署到类脑处理器的映射优化算法研究
4
作者 陈奥新 陈亮 +2 位作者 李千鹏 王智超 徐东君 《计算机工程与应用》 北大核心 2025年第11期156-165,共10页
近年来,具有生物合理性和能效优势的脉冲神经网络(SNN)受到广泛关注。然而,目前在类脑处理器上部署SNN的映射方案存在通信延迟高、拥塞严重、能耗高和节点连接性不足等问题,从而削弱了其实用性和执行效率。为解决这些问题,提出了基于KL(... 近年来,具有生物合理性和能效优势的脉冲神经网络(SNN)受到广泛关注。然而,目前在类脑处理器上部署SNN的映射方案存在通信延迟高、拥塞严重、能耗高和节点连接性不足等问题,从而削弱了其实用性和执行效率。为解决这些问题,提出了基于KL(Kernighan-Lin)和波尔兹曼退火差分进化(Boltzmann anneal differential evolution,BADE)的改进部署算法,用于将SNN映射到资源受限的类脑处理器上。该算法包括两个步骤:分区和映射。在分区阶段,通过在递归KL算法中引入全局优化策略(GRBKL)来最小化集群之间的通信延迟;在映射阶段,提出利用吸引子导向的BADE算法(BAFDE)寻找最小化通信延迟和最大拥塞的分配方式。用五个SNN实例对该算法进行了评估,结果表明,与SNEAP和SpiNeMap等方法相比,所提出的算法显著降低了通信延迟(分别降低了55.41%和94.73%)和最大拥塞(分别降低了81.27%和97.79%)。 展开更多
关键词 脉冲神经网络(SNN) 类脑处理器 启发式算法 片上网络(NOC)
在线阅读 下载PDF
改进VMD和改进Elman的地铁列车滚动轴承故障诊断 被引量:1
5
作者 刘敏 杨俊杰 赵雪 《机械设计与制造》 北大核心 2025年第5期207-212,共6页
滚动轴承作为地铁列车的重要组成之一,直接影响列车安全,针对现有滚动轴承故障诊断方法存在的准确率差和效率低等问题,在对滚动轴承进行故障分析的基础上,提出将改进的变分模态分解和改进的Elman神经网络相结合用于地铁列车滚动轴承振... 滚动轴承作为地铁列车的重要组成之一,直接影响列车安全,针对现有滚动轴承故障诊断方法存在的准确率差和效率低等问题,在对滚动轴承进行故障分析的基础上,提出将改进的变分模态分解和改进的Elman神经网络相结合用于地铁列车滚动轴承振动信号的特征提取和故障诊断。通过改进的麻雀搜索算法对变分模式分解算法(分解个数和惩罚因子)和Elman神经网络(权重和阈值)进行寻优,提高特征提取和故障诊断精度和效率。通过实验对其性能进行分析。结果表明,相比于常规方法,所提地铁列车滚动轴承振动信号特征提取方法收敛速度快和运行时间短,故障诊断模型具有较高的诊断准确率和效率,故障诊断准确率达99.00%,平均诊断时间2.02s,具有一定的实用价值。 展开更多
关键词 地铁列车 滚动轴承 故障诊断 变分模态分解 ELMAN神经网络 麻雀搜索算法
在线阅读 下载PDF
基于BOA-BP神经网络的四旋翼飞行器路径优化 被引量:1
6
作者 王舒玮 李嘉 +1 位作者 冯健 岳彩宾 《现代防御技术》 北大核心 2025年第3期74-81,共8页
针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了... 针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。 展开更多
关键词 四旋翼 飞行器 蝴蝶优化算法 BP神经网络 路径优化 训练样本 误差处理
在线阅读 下载PDF
基于多色域特征与物理模型的水下图像增强
7
作者 张瑞航 林森 《智能系统学报》 北大核心 2025年第2期475-485,共11页
水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提... 水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提供的信息帮助图像颜色恢复。其次,为获取到更真实的视觉效果,对白平衡算法进行推广,并将深度学习算法与水下光学成像模型结合,以数据驱动的方式求解清晰图像。最后,提出多色域轮换模式对网络进行训练,在不同色域空间中搜索最优解。实验证明,该方法在色彩平衡、细节恢复方面效果显著,相比经典算法与前沿算法更具优势,在特征点匹配与显著性检验任务中满足水下智能机器人视觉系统对图像清晰度的要求。 展开更多
关键词 水下图像增强 成像模型 深度学习 多色域空间 特征聚合 轮换训练 算法推广 卷积神经网络
在线阅读 下载PDF
基于蜂群优化的Spiking神经网络模型研究与评估 被引量:2
8
作者 马韦伟 郑勤红 刘珊珊 《计算机科学》 CSCD 北大核心 2023年第8期221-225,共5页
为提高Spiking神经网络的训练能力,以多标签分类问题作为研究切入点,采用蜂群算法进行模型优化。基于Spiking理念的神经网络模型有多种,文中选择概率Spiking神经网络(Probabilistic Spiking Neural Network,PSNN)进行多标签分类。首先,... 为提高Spiking神经网络的训练能力,以多标签分类问题作为研究切入点,采用蜂群算法进行模型优化。基于Spiking理念的神经网络模型有多种,文中选择概率Spiking神经网络(Probabilistic Spiking Neural Network,PSNN)进行多标签分类。首先,建立概率Spiking神经网络分类模型,通过点火时间序列进行编码,触发脉冲响应实现数据传递;然后,利用Spiking神经网络的权重、动态阈值、遗忘参数等构建蜂群,并以多标签分类准确率作为人工蜂群(Artificial Bee Colony,ABC)算法的适应度函数,从而通过不断更新蜂群个体适应度值来获得最优个体;最后,以最优参数完成概率Spiking神经网络的多标签分类。实验结果表明,通过合理设置蜂群个体规模及蜜源搜索范围,ABC-PSNN算法能够获得较高的多标签分类准确率。相比其他Spiking神经网络模型和常用多标签分类算法,ABC-PSNN算法具备更高的分类准确率和稳定性。 展开更多
关键词 spiking神经网络 概率spiking神经网络 蜂群算法 多标签分类 脉冲响应
在线阅读 下载PDF
基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法 被引量:5
9
作者 毛建锋 李铮 +2 位作者 伍军 余志武 胡连军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3661-3671,共11页
在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基... 在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络模型的重载车桥系统随机振动响应预测方法。该方法以车桥随机参数与轨道随机不平顺激励为输入,以桥梁动力响应为输出构造代理模型。首先,基于商业软件MATLAB平台构建PSO-LSTM网络模型;其次,通过建立的车-轨-桥系统随机振动分析模型计算初始样本集对应的随机动态响应,并进行模型训练,同时利用PSO算法优化LSTM结构参数;最后,使用训练好的PSO-LSTM模型对桥梁动态响应进行预测。为了验证本算法的优越性和鲁棒性,以朔黄重载铁路实测数据为例,对比本算法与BP(Back Propagation)神经网络、GRU(Gated Recurrent Unit)神经网络和LSTM神经网络的预测效率,并讨论不同车速下的预测情况,开展本模型与实测数据及有限元分析数据的对比分析。研究结果表明:在PSO优化下,LSTM模型预测结果得到一定的改善,PSO-LSTM模型拟合相关性系数可以达到0.97,其他评价误差值也均小于BP神经网络、GRU神经网络模型,本文模型可更高效准确地预测桥梁随机动力响应,可为进一步发展车-轨-桥系统随机振动响应预测理论提供技术支持。 展开更多
关键词 随机振动 响应预测 PSO算法 LSTM神经网络 车轨桥系统
在线阅读 下载PDF
严重遮挡场景下AOA-ENN辅助列车定位的方法研究 被引量:1
10
作者 武晓春 杨伟康 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2871-2883,共13页
铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提... 铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提出阿基米德优化算法优化的Elman神经网络(AOA-ENN)辅助BDS/SINS列车组合定位系统进行列车定位的方法。首先,在无迹卡尔曼滤波算法中引入新息理论得到自适应无迹卡尔曼滤波算法(AUKF),将其作为BDS/SINS列车组合定位系统的信息融合算法。其次,基于模糊C均值聚类算法(FCM)建立列车运行场景识别模型,依据环境特征参数对列车运行场景进行自主识别。最后根据场景识别模型的输出结果,当列车在开阔、低遮挡、高遮挡场景运行时,通过AUKF对BDS和SINS解算的定位信息进行融合来完成列车定位,同时将采集的列车定位数据加入训练集,对AOA-ENN进行在线训练;当列车在严重遮挡场景下运行时,BDS无法正常接收信号,利用训练好的AOA-ENN辅助列车组合定位系统进行定位,利用AUKF对AOA-ENN的预测信息和SINS解算的信息进行融合后输出定位结果。实验结果表明:在严重遮挡场景下,AOA-ENN辅助列车组合定位系统得到的定位成功率达到98.2%;通过不同优化算法和神经网络的仿真对比实验,验证了AOA-ENN在辅助列车组合定位系统定位时的优越性。所得成果为优化列车在隧道等严重遮挡场景下的定位精度提供了参考。 展开更多
关键词 列车组合定位系统 运行环境识别 自适应无迹卡尔曼滤波 阿基米德优化算法 ELMAN神经网络
在线阅读 下载PDF
高速列车纵向动力学建模与自适应RBFNN控制 被引量:3
11
作者 付雅婷 胡东亮 +1 位作者 杨辉 欧阳超明 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期42-52,共11页
高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车... 高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车前后的不同受力情况,建立列车纵向动力学模型。针对该模型无外加干扰时设计一种理想反馈控制律,引入RBFNN对理想控制输出进行拟合,在考虑干扰项影响的情况下,通过设计参数估计自适应律代替神经网络权值的调整,并对其进行Lyapunov稳定性证明。采用京石武高铁北京西—郑州东段的CRH380B型高速列车真实线路运行数据进行仿真模拟,并在相同条件下与反演滑模(BSSM)控制器的仿真结果进行对比。仿真结果表明所提控制器更能有效应对复杂路况变化和外界干扰,对高速列车具有更好的控制效果,改善其运行的平稳性及高效性。 展开更多
关键词 高速列车 纵向动力学模型 径向基函数神经网络 自适应算法 LYAPUNOV理论
在线阅读 下载PDF
基于自适应时间步脉冲神经网络的高效图像分类 被引量:1
12
作者 李千鹏 贾顺程 +1 位作者 张铁林 陈亮 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1724-1735,共12页
脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推... 脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推理延迟增大和计算能耗增高等问题,使其在边缘智能设备上的高效运行大打折扣.针对这个问题,本文提出一种自适应时间步脉冲神经网络(Adaptive timestep improved spiking neural network,ATSNN)算法.该算法可以根据不同样本特征自适应选择合适的推理时间步,并通过设计一个时间依赖的新型损失函数来约束不同计算时间步的重要性.与此同时,针对上述ATSNN特点设计一款低能耗脉冲神经网络加速器,支持ATSNN算法在VGG和ResNet等成熟框架上的应用部署.在CIFAR10、CIFAR100、CIFAR10-DVS等标准数据集上软硬件实验结果显示,与当前固定时间步的SNN算法相比,ATSNN算法的精度基本不下降,并且推理延迟减少36.7%~58.7%,计算复杂度减少33.0%~57.0%.在硬件模拟器上的运行结果显示,ATSNN的计算能耗仅为GPU RTX 3090Ti的4.43%~7.88%.显示出脑启发神经形态软硬件的巨大优势. 展开更多
关键词 脉冲神经网络 低功耗推理 高效训练 低延迟
在线阅读 下载PDF
一种基于SOM与脉冲神经网络的音频识别方法 被引量:2
13
作者 隆二红 王刚 莫凌飞 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1885-1892,共8页
近年来,在人工神经网络技术的推动下,音频分类技术不断提高。然而,传统人工神经网络存在计算功耗大、时域信号处理困难等问题。脉冲神经网络由于其事件驱动的特性,有着低功耗、可解释、时域处理能力强等特点,非常适用于音频信号处理任... 近年来,在人工神经网络技术的推动下,音频分类技术不断提高。然而,传统人工神经网络存在计算功耗大、时域信号处理困难等问题。脉冲神经网络由于其事件驱动的特性,有着低功耗、可解释、时域处理能力强等特点,非常适用于音频信号处理任务。提出一种基于SOM时空特征稀疏编码和SNN有监督分类的音频识别方法,利用MFCC进行时-频域转换后,再利用SOM实现对时间序列音频信号的稀疏编码,不同于其他基于误差反向传播的有监督学习,利用带积分的STDP学习规则训练权重,并且通过使用兴奋抑制双监督训练方法,可以使得SNN有效提取和分析音频信号中的空间特征与时间特征,最终所提方法在TIDIGITS数字音频数据集上取得了96.47%的分类准确度。 展开更多
关键词 脉冲神经网络 音频识别 SOM时空特征稀疏编码 兴奋抑制双监督训练 低功耗
在线阅读 下载PDF
面向多核向量加速器的卷积神经网络推理和训练向量化方法 被引量:1
14
作者 陈杰 李程 刘仲 《计算机工程与科学》 CSCD 北大核心 2024年第4期580-589,共10页
随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-... 随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-M7004上的VGG网络模型推理和训练算法,分别提出了卷积、池化和全连接等核心算子的向量化映射方法,采用SIMD向量化、DMA双缓冲传输和权值共享等优化策略,充分发挥了向量加速器的体系结构优势,取得了较高的计算效率。实验结果表明,在FT-M7004平台上,卷积层推理和训练的平均计算效率分别达到了86.62%和69.63%;全连接层推理和训练的平均计算效率分别达到了93.17%和81.98%;VGG网络模型在FT-M7004上的推理计算效率超过GPU平台20%以上。 展开更多
关键词 多核向量加速器 卷积神经网络 推理算法 训练算法
在线阅读 下载PDF
基于WOA优化神经网络的斜坡道拱顶沉降预测研究 被引量:1
15
作者 吴泽鑫 张成良 +1 位作者 张华超 高梅 《有色金属工程》 CAS 北大核心 2024年第4期150-160,174,共12页
为了更准确地预测地下矿山中斜坡道拱顶沉降的趋势,并控制预测精度,以保障矿山安全,提出鲸鱼算法优化神经网络的斜坡道拱顶沉降预测方法。主要步骤为:首先采取邻点中值平滑处理的方法对原始数据进行处理,将处理好的监测数据作为输入样本... 为了更准确地预测地下矿山中斜坡道拱顶沉降的趋势,并控制预测精度,以保障矿山安全,提出鲸鱼算法优化神经网络的斜坡道拱顶沉降预测方法。主要步骤为:首先采取邻点中值平滑处理的方法对原始数据进行处理,将处理好的监测数据作为输入样本对BP、Elman神经网络进行训练、测试;再利用鲸鱼算法对初始权值和阈值优化,最后通过不同模型输出预测值。实验表明:鲸鱼优化后的BP、Elman神经网络模型相比优化前均能更准确地预测斜坡道拱顶沉降;WOA-Elman模型的决定系数为0.948,优于WOA-BP模型0.941,但WOA-Elman模型运行时间耗费671.214 s远超WOA-BP模型307.226 s,WOA-Elman耗费了更多的训练时间换取了少量的精度提升,大幅降低了训练效率;结合工程实例实测值、预测值的分析比较,鲸鱼算法(WOA)优化后的BP神经网络表现出了更高效且准确的斜坡道拱顶沉降预测能力。 展开更多
关键词 拱顶沉降 BP神经网络 ELMAN神经网络 鲸鱼优化算法 训练效率
在线阅读 下载PDF
基于改进遗传算法的广度架构搜索算法 被引量:1
16
作者 林东凤 黄汉明 沈俏 《计算机工程与设计》 北大核心 2024年第12期3667-3673,共7页
为扩大遗传算法产生的子代种群和亲代种群间的差异,提出一种搜索算法,即广度单路径架构搜索算法。该方法将搜索过程分为两个阶段,第一阶段为扩张,使用一种新的交叉算子以及停滞检测算法增大子代种群和亲代种群间的差距,扩大搜索范围;第... 为扩大遗传算法产生的子代种群和亲代种群间的差异,提出一种搜索算法,即广度单路径架构搜索算法。该方法将搜索过程分为两个阶段,第一阶段为扩张,使用一种新的交叉算子以及停滞检测算法增大子代种群和亲代种群间的差距,扩大搜索范围;第二阶段为收缩,使用前一阶段获得的若干个体,采用单点交叉做搜索,保证搜索的稳定性,得到最终的结果。在4个数据集上的实验结果表明,该算法搜索出的最优网络与手工设计的神经网络和基于传统遗传算法的神经架构搜索方法相比,能获得有竞争力的结果。 展开更多
关键词 神经架构搜索 遗传算法 进化计算 均匀训练 卷积神经网络 停滞检测 图像分类
在线阅读 下载PDF
跨脉冲传播的深度脉冲神经网络训练方法
17
作者 曾建新 陈云华 +1 位作者 李炜奇 陈平华 《计算机应用研究》 CSCD 北大核心 2024年第7期2134-2140,共7页
基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确... 基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确性。为此,提出一种跨脉冲误差传播的深度脉冲神经网络训练方法(cross-spike error backpropagation,CSBP),将神经元的误差反向传播分成脉冲发放时间随突触后膜电位变化关系和相邻脉冲发放时刻点间的依赖关系两种依赖关系。其中,通过前者解决了脉冲不可微分的问题,通过后者明确了脉冲间的依赖关系,使得误差信号能跨脉冲传播,提升了生物合理性。此外,并对早期脉冲残差网络架构存在的模型表示能力不足问题进行研究,通过修改脉冲残余块的结构顺序,进一步提高了网络性能。实验结果表明,所提方法比基于脉冲时间的最优训练算法有着明显的提升,相同架构下,在CIFAR10数据集上提升2.98%,在DVS-CIFAR10数据集上提升2.26%。 展开更多
关键词 脉冲神经网络 脉冲时间依赖 误差反向传播 脉冲神经网络训练算法
在线阅读 下载PDF
基于相似日和CAPSO-SNN的光伏发电功率预测 被引量:33
18
作者 陈通 孙国强 +4 位作者 卫志农 臧海祥 孙永辉 Kwok W Cheung 李慧杰 《电力自动化设备》 EI CSCD 北大核心 2017年第3期66-71,共6页
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强... 针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 展开更多
关键词 光伏发电 功率预测 spiking神经网络 云自适应粒子群优化算法 相似日选取
在线阅读 下载PDF
列车优化操纵速度模式曲线生成的智能计算研究 被引量:27
19
作者 金炜东 靳蕃 +2 位作者 李崇维 胡飞 苟先太 《铁道学报》 EI CAS CSCD 北大核心 1998年第5期47-52,共6页
讨论了在起伏坡道线路上运行的列车节能操纵的优化计算问题,给出了一种局部优化与全局优化相配合的计算结构,用以生成列车优化操纵的速度模式曲线。以仿真计算获得局部优化规律,用神经网络实现局部优化规律的数据组织,应用遗传算法... 讨论了在起伏坡道线路上运行的列车节能操纵的优化计算问题,给出了一种局部优化与全局优化相配合的计算结构,用以生成列车优化操纵的速度模式曲线。以仿真计算获得局部优化规律,用神经网络实现局部优化规律的数据组织,应用遗传算法进行全局优化计算,获得了令人满意的结果。 展开更多
关键词 列车 优化操纵 遗传算法 速度模式曲线 节能操纵
在线阅读 下载PDF
基于遗传算法的人工神经网络 被引量:69
20
作者 李伟超 宋大猛 陈斌 《计算机工程与设计》 CSCD 北大核心 2006年第2期316-318,共3页
为克服和改进传统的BP算法的不足,发挥神经网络和遗传算法各自的优势,提出了一种基于遗传算法的神经网络二次训练方法。将遗传算法应用于神经网络的权值训练中,并用神经网络二次训练得到最终结果,降低了计算时间,是一种比较有效的方法。
关键词 BP算法 人工神经网络 遗传算法 二次训练 学习 权值
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部