In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
There has been growing attention to intraspecific variation in trait-based plant ecology. However, studies on these changes across ontogenetic stages and the potential trade-offs with interspecific traits along enviro...There has been growing attention to intraspecific variation in trait-based plant ecology. However, studies on these changes across ontogenetic stages and the potential trade-offs with interspecific traits along environmental gradients are rare. In this study, we measured six wood and bark traits of 1030 trees of six species(Castanopsis nigrescens; C. carlesii; Lithocarpus polystachyus; L. synbalanos; Ormosia glaberrima; O. pachycarpa) from a10-ha plot in a subtropical forest. Mean intraspecific variation in bark thickness and bark percentage to DBH was more than twice that for wood density and bark density.Bark thickness and bark percentage showed a consistent trend with increasing tree size. Small-tree traits were more variable than the same traits in larger trees. Altitude,convexity and soil nutrients explained the majority of the variations in the six traits, while sibling species had similar relationships between traits and environmental variables.Trees with dense wood and thin bark were usually found on steep slopes at lower altitudes. Our findings show intraspecific trait variability has different spatial patterns compared with interspecific variabilities along an environmental gradient.展开更多
The efficient antenna scheduling strategy for data relay satellites(DRSs)is essential to optimize the throughput or delay of the satellite data relay network.However,these two objectives conflict with each other since...The efficient antenna scheduling strategy for data relay satellites(DRSs)is essential to optimize the throughput or delay of the satellite data relay network.However,these two objectives conflict with each other since the user satellites(USs)with higher priorities take up more transmission time of DRSs’antennas for greater throughput but the USs storing more packets cause a severer waiting delay to the whole network.To balance the conflicting metrics for meeting the delay-throughput integrated requirements,we formulate the antenna scheduling as a stochastic non-convex fractional programming,which is challenging to be solved.For the tractability,we equivalently transform the fractional programming to a parametric problem and implement the Lyapunov drift to guarantee the constraint of mean rate stability.By proposing a delay and throughput tradeoff based antenna scheduling algorithm,we further transform the parametric problem to a solvable weight matching problem.Simulation results reveal the feasible region of the preference control parameter for integrated QoS cases and its variation relationship with network delay and throughput.展开更多
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantita...Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.展开更多
Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of sec...Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of security.Nevertheless,maximizing SE and EE are not achievable simultaneously.In this paper,we investigate the SE and EE tradeoff for secure transmission in cognitive relay networks where all nodes are randomly distributed.We first introduce the opportunistic relay selection policy,where each primary transmitter communicates with the primary receiver with the help of a secondary user as a relay.Then,we evaluate the secure SE and secure EE of the primary network based on the outage probabilities analysis.Thirdly,by applying a unified SE-EE tradeoff metric,the secure SE and EE tradeoff problem is formulated as the joint secure SE and EE maximization problem.Considering the non-concave feature of the objective function,an iterative algorithm is proposed to improve secure SE and EE tradeoff.Numerical results show that the opportunistic relay selection policy is always superior to random relay selection policy.Furthermore,the opportunistic relay selection policy outperforms conventional direct transmission policy when faced with small security threat(i.e.,for smaller eavesdropper density).展开更多
In this paper, the dynamic tradeoff of forced steering motor trucks is analyzed in detail. Some dynamic models are developed to analyze the nonlinear curving, lateral stability and stick slip vibration stability. The...In this paper, the dynamic tradeoff of forced steering motor trucks is analyzed in detail. Some dynamic models are developed to analyze the nonlinear curving, lateral stability and stick slip vibration stability. The computed results show that forced steering motor trucks successfully solve the tradeoff problem among traction, steering and stability. Its comprehensive dynamic performance is excellent.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.
基金funded by the National Natural Science Foundation of China(Key Projects 31230013,31361140363)the Zhang-Hongda Science Foundation at Sun Yat-sen University
文摘There has been growing attention to intraspecific variation in trait-based plant ecology. However, studies on these changes across ontogenetic stages and the potential trade-offs with interspecific traits along environmental gradients are rare. In this study, we measured six wood and bark traits of 1030 trees of six species(Castanopsis nigrescens; C. carlesii; Lithocarpus polystachyus; L. synbalanos; Ormosia glaberrima; O. pachycarpa) from a10-ha plot in a subtropical forest. Mean intraspecific variation in bark thickness and bark percentage to DBH was more than twice that for wood density and bark density.Bark thickness and bark percentage showed a consistent trend with increasing tree size. Small-tree traits were more variable than the same traits in larger trees. Altitude,convexity and soil nutrients explained the majority of the variations in the six traits, while sibling species had similar relationships between traits and environmental variables.Trees with dense wood and thin bark were usually found on steep slopes at lower altitudes. Our findings show intraspecific trait variability has different spatial patterns compared with interspecific variabilities along an environmental gradient.
基金supported in part by the Natural Science Foundation of China under Grant U19B2025,Grant 61725103,Grant 61701363,Grant 61931005,and Grant 62001347.
文摘The efficient antenna scheduling strategy for data relay satellites(DRSs)is essential to optimize the throughput or delay of the satellite data relay network.However,these two objectives conflict with each other since the user satellites(USs)with higher priorities take up more transmission time of DRSs’antennas for greater throughput but the USs storing more packets cause a severer waiting delay to the whole network.To balance the conflicting metrics for meeting the delay-throughput integrated requirements,we formulate the antenna scheduling as a stochastic non-convex fractional programming,which is challenging to be solved.For the tractability,we equivalently transform the fractional programming to a parametric problem and implement the Lyapunov drift to guarantee the constraint of mean rate stability.By proposing a delay and throughput tradeoff based antenna scheduling algorithm,we further transform the parametric problem to a solvable weight matching problem.Simulation results reveal the feasible region of the preference control parameter for integrated QoS cases and its variation relationship with network delay and throughput.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21190040,91430217,and 11305176)
文摘Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.
文摘Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of security.Nevertheless,maximizing SE and EE are not achievable simultaneously.In this paper,we investigate the SE and EE tradeoff for secure transmission in cognitive relay networks where all nodes are randomly distributed.We first introduce the opportunistic relay selection policy,where each primary transmitter communicates with the primary receiver with the help of a secondary user as a relay.Then,we evaluate the secure SE and secure EE of the primary network based on the outage probabilities analysis.Thirdly,by applying a unified SE-EE tradeoff metric,the secure SE and EE tradeoff problem is formulated as the joint secure SE and EE maximization problem.Considering the non-concave feature of the objective function,an iterative algorithm is proposed to improve secure SE and EE tradeoff.Numerical results show that the opportunistic relay selection policy is always superior to random relay selection policy.Furthermore,the opportunistic relay selection policy outperforms conventional direct transmission policy when faced with small security threat(i.e.,for smaller eavesdropper density).
文摘In this paper, the dynamic tradeoff of forced steering motor trucks is analyzed in detail. Some dynamic models are developed to analyze the nonlinear curving, lateral stability and stick slip vibration stability. The computed results show that forced steering motor trucks successfully solve the tradeoff problem among traction, steering and stability. Its comprehensive dynamic performance is excellent.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.