An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Sin...An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.展开更多
Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subse...Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subset and axis-symmetric model-subset, if system mode is a random variable and obeys certain probability distribution. They can be used as the fun- damental model-subset for multiple models estimation with fixed structure, variable structure and moving bank. The model-groups constructed by above designed subsets are given, which give the practical guidance for use of model-set in multiple models ap- proach with a variable structure. Simulation results show that the performances of two minimal model-set significantly outperform the corresponding model-sets with fixed spacing.展开更多
The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to s...The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble...Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.展开更多
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m...To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.展开更多
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M...It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.展开更多
The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the m...The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.展开更多
To avoid or reduce the influence of unpredictable motion mode on data association, a new computing method of weighted coefficients of measurements for PDAF is presented in which it is assumed that the current turn rat...To avoid or reduce the influence of unpredictable motion mode on data association, a new computing method of weighted coefficients of measurements for PDAF is presented in which it is assumed that the current turn rate of a maneuvering target changes within a limited range and its turn may be in arbitrary direction during data association. Thus, the predicted center for computing the weighted coefficients is a curved surface in 3-D space, which differs from the predicted center for setting up a validation gate, namely, a point in 3-D space. The distance between a measurement and the curved surface is used to compute its weighted coefficient. To reduce the computational complexity of weighted coefficients, the formulas for computing the maneuvering direction angle and turn rate corresponding to a measurement are presented. Simulation results show the proposed method reduces the percentage of lost tracks and improves the state estimation accuracy in tracking a maneuvering target using PDAF in the presence of clutter.展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accura...Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.展开更多
A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are runn...A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.展开更多
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl...Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.展开更多
Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent perfo...Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.展开更多
A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link i...A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link in the integrated Flight/Fire Control (IFFC) system. By adopting the Cartesian coordinates and pseudomeasurements ,the result ed TSE has it s advantages in computation.In addition, by employing accurate range and range-rate redundant filter, the range direction estimations obtained in Cartesian filter are greatly improved. The TSE shows its satisfaCtory performance in the Monte Carlo simulation of the IFFC system.展开更多
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金supported by the National Natural Science Foundation of China(6153102061471383)
文摘An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.
基金supported by Liaoning Province Innovative Team of Higher Education(2008T090)
文摘Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subset and axis-symmetric model-subset, if system mode is a random variable and obeys certain probability distribution. They can be used as the fun- damental model-subset for multiple models estimation with fixed structure, variable structure and moving bank. The model-groups constructed by above designed subsets are given, which give the practical guidance for use of model-set in multiple models ap- proach with a variable structure. Simulation results show that the performances of two minimal model-set significantly outperform the corresponding model-sets with fixed spacing.
文摘The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Aeronautical Science Foundation of China(Grant No.2017ZC53021)+1 种基金Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-220)to provide fund for conducting experiments.
文摘Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.
基金supported by the National Natural Science Foundation of China(61773267)the Shenzhen Fundamental Research Project(JCYJ2017030214551952420170818102503604)
文摘To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.
基金supported by the Natural Science Foundation of Anhui Province(1708085QF149)。
文摘It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.
基金This project was supported by Spaceflight Support Fund ( HIT01) and the Spaceflight Science Project Group
文摘The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.
文摘To avoid or reduce the influence of unpredictable motion mode on data association, a new computing method of weighted coefficients of measurements for PDAF is presented in which it is assumed that the current turn rate of a maneuvering target changes within a limited range and its turn may be in arbitrary direction during data association. Thus, the predicted center for computing the weighted coefficients is a curved surface in 3-D space, which differs from the predicted center for setting up a validation gate, namely, a point in 3-D space. The distance between a measurement and the curved surface is used to compute its weighted coefficient. To reduce the computational complexity of weighted coefficients, the formulas for computing the maneuvering direction angle and turn rate corresponding to a measurement are presented. Simulation results show the proposed method reduces the percentage of lost tracks and improves the state estimation accuracy in tracking a maneuvering target using PDAF in the presence of clutter.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金Supported by the Special Funds for Major State Basic Research Program of P.R.China(2001CB309403)
文摘Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.
文摘A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.
基金supported by the National Natural Science Foundation of China(51467013)
文摘Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.
基金supported by the Fundamental Research Funds for the Central Universities(NJ20140010)the Scientific Research Start-up Funding from Jiangsu University of Science and Technology+1 种基金the Scienceand Technology on Electronic Information Control Laboratory Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.
文摘A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link in the integrated Flight/Fire Control (IFFC) system. By adopting the Cartesian coordinates and pseudomeasurements ,the result ed TSE has it s advantages in computation.In addition, by employing accurate range and range-rate redundant filter, the range direction estimations obtained in Cartesian filter are greatly improved. The TSE shows its satisfaCtory performance in the Monte Carlo simulation of the IFFC system.