期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
1
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects 被引量:11
2
作者 Fang Deng Jie Chen Chen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期655-665,共11页
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed... An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method. 展开更多
关键词 parameter estimation state estimation unscented Kalman filter (UKF) strong tracking filter wavelet transform.
在线阅读 下载PDF
Low-cost adaptive square-root cubature Kalman filter forsystems with process model uncertainty 被引量:6
3
作者 an zhang shuida bao +1 位作者 wenhao bi yuan yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期945-953,共9页
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil... A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF. 展开更多
关键词 square-root cubature Kalman filter strong tracking filter robustness computational load.
在线阅读 下载PDF
A novel SMC-PHD filter based on particle compensation
4
作者 徐从安 何友 +3 位作者 杨富程 简涛 王海鹏 李天梅 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1826-1836,共11页
As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduce... As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios. 展开更多
关键词 random finite set(RFS) probability hypothesis density(PHD) particle filter(PF) particle impoverishment particle compensation multi-target tracking(MTT)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部