In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrang...In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and veri- fied by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin' s mini- mum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1 - 2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly re- duced by applying the proposed optimal tracking control method.展开更多
This paper estimates an off-policy integral reinforcement learning(IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the...This paper estimates an off-policy integral reinforcement learning(IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman(HJB) equation, an off-policy IRL algorithm is proposed.It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method.展开更多
In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformat...In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.展开更多
A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary ...A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary condition of optimally (NCO) tracking controller, calculates the optimal set-point of the process; and the second layer, output neighboring-extremal controller, calculates the input values of the controlled plant. The algorithm design and convergent analysis of output neighboring-extremal controller are discussed emphatically, and in the case of existing parametric uncertainty, the approach is shown to converge to the optimum atmost in two iterations. At last the approach is illustrated by simulation results for a dynamic CSTR.展开更多
基金Supported by the National Natural Science Foundation of China(51475043)
文摘In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and veri- fied by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin' s mini- mum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1 - 2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly re- duced by applying the proposed optimal tracking control method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61304079 and 61374105)the Beijing Natural Science Foundation,China(Grant Nos.4132078 and 4143065)+2 种基金the China Postdoctoral Science Foundation(Grant No.2013M530527)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-119A2)the Open Research Project from State Key Laboratory of Management and Control for Complex Systems,China(Grant No.20150104)
文摘This paper estimates an off-policy integral reinforcement learning(IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman(HJB) equation, an off-policy IRL algorithm is proposed.It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method.
基金supported by the Open Research Project from SKLMCCS (Grant No. 20120106)the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-13-018A)+1 种基金the Postdoctoral Science Foundation of China (Grant No. 2013M530527)the National Natural Science Foundation of China (Grant Nos. 61304079, 61125306, and 61034002)
文摘In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.
文摘A new optimizing framework of process operation is proposed to deal with optimizing op- eration of continuous stirred tank reactor (CSTR). The optimization framework includes two layers: the first layer, necessary condition of optimally (NCO) tracking controller, calculates the optimal set-point of the process; and the second layer, output neighboring-extremal controller, calculates the input values of the controlled plant. The algorithm design and convergent analysis of output neighboring-extremal controller are discussed emphatically, and in the case of existing parametric uncertainty, the approach is shown to converge to the optimum atmost in two iterations. At last the approach is illustrated by simulation results for a dynamic CSTR.