In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication te...Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication techniques with a 0 dB peak to average power ratio(PAPR).However,with the proper selection of fractional order,the first technique has a high bit error rate(BER)performance in the frequency-time selective channels.This paper performs further analysis of CE-FrFT-OFDM by examining its spectral efficiency(SE)and energy efficiency(EE)and compare to the famous OFDM and FrFT-OFDM techniques.Analytical and comprehensive simulations conducted show that,the CE-FrFT-OFDM has five times the EE of OFDM and FrFT-OFDM systems with a slightly less SE.Increasing CE-FrFT-OFDM’s transmission power by increasing its amplitude to 1.7 increases its SE to match that of the OFDM and FrFT-OFDM systems while slightly reducing its EE by 20%to be four times that of OFDM and FrFTOFDM systems.OFDM and FrFT-OFDM’s amplitude fluctuations cause rapid changing output back-off(OBO)power requirements and further reduce power amplifier(PA)efficiency while CE-FrFTOFDM stable operational linear range makes it a better candidate and outperforms the other techniques when their OBO exceeds 1.7.Higher EE and low BER in time-frequency selective channel are attracting features for CE-FrFT-OFDM deployment in mobile devices.展开更多
Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority ...Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal eng...Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the ...This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.展开更多
In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way A...In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.展开更多
The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterpris...The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.展开更多
Sheet metal forming,as a typical energy-intensive process,consumes massive energy.Due to the significant difference between sheet metal forming and machining,manufacturers still lack an effective method to monitor and...Sheet metal forming,as a typical energy-intensive process,consumes massive energy.Due to the significant difference between sheet metal forming and machining,manufacturers still lack an effective method to monitor and analyze the energy efficiency in the sheet metal forming workshop.To this end,an energy efficiency monitoring and analysis(EEMA)method,which is supported by Internet of Things(IoT),is proposed.The characteristics in a forming workshop are first analyzed,and then the architecture of the method is expatiated-detailedly.Energy efficiency indicators at machine level,process level,and workshop level are defined,respectively.Finally,a sheet metal forming workshop for the deformation of panels of forklift was investigated to validate the effectiveness and benefits of the proposed method.With the application of the IoT-enabled method,various energy-saving decisions can be made by the management of the enterprises for energy efficiency improvement and energy consumption reduction(EEIECR)in the sheet metal forming workshop.展开更多
The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal ...The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal number of antennas and the maximum EE are achieved in the high regime of the signal-to-noise ratio(SNR). It is shown that the optimal number of antennas and the maximum EE gets larger with the increase in user numbers. To further improve the EE, an optimization algorithm with low complexity is proposed to jointly determine the number of antennas and the transmit powers of both the uplink and the downlink. It is shown that, the proposed algorithm can achieve the system performance very close to the exhaustive search.展开更多
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ...The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.展开更多
In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utiliza...In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utilization is essential to improve energy efficiency of cloud data center.Although,most of the existing literature focuses on virtual machine(VM)consolidation for increasing energy efficiency at the cost of service level agreement degradation.In order to improve the existing approaches,load aware three-gear THReshold(LATHR)as well as modified best fit decreasing(MBFD)algorithm is proposed for minimizing total energy consumption while improving the quality of service in terms of SLA.It offers promising results under dynamic workload and variable number of VMs(1-290)allocated on individual host.The outcomes of the proposed work are measured in terms of SLA,energy consumption,instruction energy ratio(IER)and the number of migrations against the varied numbers of VMs.From experimental results it has been concluded that the proposed technique reduced the SLA violations(55%,26%and 39%)and energy consumption(17%,12%and 6%)as compared to median absolute deviation(MAD),inter quartile range(IQR)and double threshold(THR)overload detection policies,respectively.展开更多
A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element...This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.展开更多
The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature....The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.展开更多
This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated;Secondly,...This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated;Secondly, the analysis of existing energy consuming in the sensing layer and its calculation method were provided to build the energy conserving objective function;What’s more, the other two indicators in target tracking, including target detection probability and tracking accuracy, were combined to be regarded as the constraints of the energy conserving objective function. Fourthly, the three energy conserving approaches, containing optimizing the management scheme, prolonging the time interval between two adjacent observations, and transmitting the observations selectively, were introduced;In addition, the improved lion algorithm combined with the Logistic chaos sequence was proposed to obtain sensor management schemes. Finally, simulations had been made to prove the effectiveness of the proposed methods and algorithm.展开更多
The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimizatio...The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.展开更多
Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),a...Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.展开更多
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
文摘Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication techniques with a 0 dB peak to average power ratio(PAPR).However,with the proper selection of fractional order,the first technique has a high bit error rate(BER)performance in the frequency-time selective channels.This paper performs further analysis of CE-FrFT-OFDM by examining its spectral efficiency(SE)and energy efficiency(EE)and compare to the famous OFDM and FrFT-OFDM techniques.Analytical and comprehensive simulations conducted show that,the CE-FrFT-OFDM has five times the EE of OFDM and FrFT-OFDM systems with a slightly less SE.Increasing CE-FrFT-OFDM’s transmission power by increasing its amplitude to 1.7 increases its SE to match that of the OFDM and FrFT-OFDM systems while slightly reducing its EE by 20%to be four times that of OFDM and FrFTOFDM systems.OFDM and FrFT-OFDM’s amplitude fluctuations cause rapid changing output back-off(OBO)power requirements and further reduce power amplifier(PA)efficiency while CE-FrFTOFDM stable operational linear range makes it a better candidate and outperforms the other techniques when their OBO exceeds 1.7.Higher EE and low BER in time-frequency selective channel are attracting features for CE-FrFT-OFDM deployment in mobile devices.
基金Project(2010R10036) supported by the Science and Technology Department of Zhejiang Province, China
文摘Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
基金Project(2018YFC0704500)supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period。
文摘Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金supported by the National Natural Science Foundation of China(61671474).
文摘This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.
基金Project(IRT0852) supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(2012CB316100) supported by the National Basic Research Program of China+2 种基金Projects(61101144,61101145) supported by the National Natural Science Foundation of ChinaProject(B08038) supported by the "111" Project,ChinaProject(K50510010017) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.
基金Project(1301021018) supported by Science and Technology Research Project of Anhui Province,China
文摘The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.
基金Projects(U20A20295,52005146)supported by the National Natural Science Foundation of ChinaProject(PA2019GDQT 0024)supported by Fundamental Research Funds for the Central Universities,China。
文摘Sheet metal forming,as a typical energy-intensive process,consumes massive energy.Due to the significant difference between sheet metal forming and machining,manufacturers still lack an effective method to monitor and analyze the energy efficiency in the sheet metal forming workshop.To this end,an energy efficiency monitoring and analysis(EEMA)method,which is supported by Internet of Things(IoT),is proposed.The characteristics in a forming workshop are first analyzed,and then the architecture of the method is expatiated-detailedly.Energy efficiency indicators at machine level,process level,and workshop level are defined,respectively.Finally,a sheet metal forming workshop for the deformation of panels of forklift was investigated to validate the effectiveness and benefits of the proposed method.With the application of the IoT-enabled method,various energy-saving decisions can be made by the management of the enterprises for energy efficiency improvement and energy consumption reduction(EEIECR)in the sheet metal forming workshop.
基金supported by the National Natural Science Foundation of China(61371188)the Research Fund for the Doctoral Program of Higher Education(20130131110029)+2 种基金the Open Fund of State Key Laboratory of Integrated Services Networks(ISN14-03)the China Postdoctoral Science Foundation(2014M560553)the Special Funds for Postdoctoral Innovative Projects of Shandong Province(201401013)
文摘The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal number of antennas and the maximum EE are achieved in the high regime of the signal-to-noise ratio(SNR). It is shown that the optimal number of antennas and the maximum EE gets larger with the increase in user numbers. To further improve the EE, an optimization algorithm with low complexity is proposed to jointly determine the number of antennas and the transmit powers of both the uplink and the downlink. It is shown that, the proposed algorithm can achieve the system performance very close to the exhaustive search.
基金国家重点基础研究发展计划项目(973项目)(2009CB219801)国家杰出青年科学基金(51025624)+2 种基金国家科技支撑计划项目(2011BAA04803-2). The National Basic Research Program of China (973 Program) (2009CB219801) The Funds for Creative Research Groups of China (51025624) Chinese Key Technology R&D Program (2011BAA04B03-2).
文摘The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.
文摘In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utilization is essential to improve energy efficiency of cloud data center.Although,most of the existing literature focuses on virtual machine(VM)consolidation for increasing energy efficiency at the cost of service level agreement degradation.In order to improve the existing approaches,load aware three-gear THReshold(LATHR)as well as modified best fit decreasing(MBFD)algorithm is proposed for minimizing total energy consumption while improving the quality of service in terms of SLA.It offers promising results under dynamic workload and variable number of VMs(1-290)allocated on individual host.The outcomes of the proposed work are measured in terms of SLA,energy consumption,instruction energy ratio(IER)and the number of migrations against the varied numbers of VMs.From experimental results it has been concluded that the proposed technique reduced the SLA violations(55%,26%and 39%)and energy consumption(17%,12%and 6%)as compared to median absolute deviation(MAD),inter quartile range(IQR)and double threshold(THR)overload detection policies,respectively.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
基金Project(51979156)supported by the National Natural Science Foundation of ChinaProject(tsqn202103087)supported by the Young Taishan Scholars,ChinaProject(2019KJG015)supported by the Youth Innovation Technology Project of Higher School in Shandong Province,China。
文摘This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.
基金supported in part by the Fundamental Research Funds for the Central Universities,China[grant number 2682020GF03]in part by the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education,China.
文摘The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.
基金funded by (Defense Pre-Research Fund Project of China), grant number 012015012600A2203NSFC (Natural Science Foundation of China), grant number 61573374。
文摘This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated;Secondly, the analysis of existing energy consuming in the sensing layer and its calculation method were provided to build the energy conserving objective function;What’s more, the other two indicators in target tracking, including target detection probability and tracking accuracy, were combined to be regarded as the constraints of the energy conserving objective function. Fourthly, the three energy conserving approaches, containing optimizing the management scheme, prolonging the time interval between two adjacent observations, and transmitting the observations selectively, were introduced;In addition, the improved lion algorithm combined with the Logistic chaos sequence was proposed to obtain sensor management schemes. Finally, simulations had been made to prove the effectiveness of the proposed methods and algorithm.
基金Projects(61801237,61701255)supported by the National Natural Science Foundation of ChinaProject(SBH17024)supported by the Postdoctoral Science Foundation of Jiangsu Province,China+2 种基金Project(15KJB510026)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(BK20150866)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NY215046,NY217056)supported by the Introduction of Talent Fund of Nanjing University of Posts and Telecommunications,China
文摘The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.
文摘Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.