超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II...超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.展开更多
文摘低剂量CT(low-dose CT,LDCT)图像的去噪任务是一个高度复杂且不确定的逆问题。现有的基于CNN的方法虽然有效,但提升空间有限且计算成本高。相比之下,将图像先验知识与模型相结合来辅助图像去噪是一种更有效的方法。提出了一种名为AWTV_GANet的LDCT图像去噪框架。该框架利用自适应加权总变分(adaptive weighted total variation,AWTV)展开和高斯注意力引导的方法,通过端到端的CNN模型,将噪声优化模型、边缘检测模型和图像重建模型集成在一起。实验证明,AWTV_GANet能够准确地去除伪影噪声,并恢复出更精细的结构细节,与其他方法相比具有优异的性能。
文摘超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.