Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) represents the most technically challenging procedure in contemporary interventional cardiology.[1] Blunt lesions and presence of proximal side...Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) represents the most technically challenging procedure in contemporary interventional cardiology.[1] Blunt lesions and presence of proximal side branch are considered to be strong predictors of reduced technical success.[ 2,3] For such lesions, the antegrade approach may not be feasible or desirable, and the retrograde approach can be used as the initial crossing strategy. However, when treating the blunt CTO with a large side branch proximal to the occlusion, the side branch might be occluded after stent implantation if the retrograde guidewire passed the occluded segment through the subintimal space and re-entered into the true lumen at the opposite side of the side branch.[4] We reported a useful method to solve the above issue which utilizes intravascular ultrasound (IVUS) to guide “extended” reverse controlled antegrade and retrograde subintimal tracking (CART) technique with a cutting balloon.展开更多
In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic su...In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic superiority of SHRD process is presented when a comparison on the total annual cost(TAC) of the conventional distillation process, the vapor recompression distillation process and the SHRD process was made. For the SHRD process, 37.74% and 11.35% savings of TAC can be achieved as compared to the conventional distillation process and vapor recompression distillation process, respectively. The dynamic characteristics of this promising SHRD sequence had been studied, and the dynamic responses demonstrated that 10% changes in both feed flow rate and feed composition can be well handled by the control strategy with dual-temperature control. It is proven that the SHRD system not only can provide economical savings but also can operate normally with good controllability.展开更多
Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were...Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
文摘Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) represents the most technically challenging procedure in contemporary interventional cardiology.[1] Blunt lesions and presence of proximal side branch are considered to be strong predictors of reduced technical success.[ 2,3] For such lesions, the antegrade approach may not be feasible or desirable, and the retrograde approach can be used as the initial crossing strategy. However, when treating the blunt CTO with a large side branch proximal to the occlusion, the side branch might be occluded after stent implantation if the retrograde guidewire passed the occluded segment through the subintimal space and re-entered into the true lumen at the opposite side of the side branch.[4] We reported a useful method to solve the above issue which utilizes intravascular ultrasound (IVUS) to guide “extended” reverse controlled antegrade and retrograde subintimal tracking (CART) technique with a cutting balloon.
基金Financial supports from the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic superiority of SHRD process is presented when a comparison on the total annual cost(TAC) of the conventional distillation process, the vapor recompression distillation process and the SHRD process was made. For the SHRD process, 37.74% and 11.35% savings of TAC can be achieved as compared to the conventional distillation process and vapor recompression distillation process, respectively. The dynamic characteristics of this promising SHRD sequence had been studied, and the dynamic responses demonstrated that 10% changes in both feed flow rate and feed composition can be well handled by the control strategy with dual-temperature control. It is proven that the SHRD system not only can provide economical savings but also can operate normally with good controllability.
基金Financial supports of the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.