设计满足特定需求的三维有序多孔的微桁架点阵结构,是解决航空航天领域某些构件轻量化问题的方法之一。首先,基于具有惩罚的实体各向同性材料(Solid isotropic microstructure with penalization,SIMP)拓扑优化算法,以最小柔度为目标,...设计满足特定需求的三维有序多孔的微桁架点阵结构,是解决航空航天领域某些构件轻量化问题的方法之一。首先,基于具有惩罚的实体各向同性材料(Solid isotropic microstructure with penalization,SIMP)拓扑优化算法,以最小柔度为目标,在不同载荷边界条件下进行点阵胞元的优化,随后对拓扑优化的点阵胞元进行几何重构。采用三维数值均匀化算法分析胞元在不同相对密度下的弹性矩阵及弹性模量曲面,对比4种胞元的各项力学性能;对选择性激光烧结(Selective laser sintering,SLS)增材制造技术制备的试件进行物理试验并对比试验结果,得到不同构型点阵结构胞元的力学性能。最后,以三点弯曲梁为例分析应力分布,并按照应力分布对梁结构进行Octet胞元的变密度点阵结构设计;同时设计均匀点阵结构作为对照,并通过三点弯曲试验对比变密度点阵结构与均匀点阵结构的力学性能。结果表明,优化并重构的4种胞元的三维数值均匀化模拟与压缩试验结果吻合良好;S Star Tet胞元的弹性模量最大,Octet胞元具有最高的剪切模量和较好的各向同性。相较于均匀点阵结构,变密度点阵结构的弯曲刚度和弯曲强度分别提高了162.6%和250.5%。展开更多
文摘设计满足特定需求的三维有序多孔的微桁架点阵结构,是解决航空航天领域某些构件轻量化问题的方法之一。首先,基于具有惩罚的实体各向同性材料(Solid isotropic microstructure with penalization,SIMP)拓扑优化算法,以最小柔度为目标,在不同载荷边界条件下进行点阵胞元的优化,随后对拓扑优化的点阵胞元进行几何重构。采用三维数值均匀化算法分析胞元在不同相对密度下的弹性矩阵及弹性模量曲面,对比4种胞元的各项力学性能;对选择性激光烧结(Selective laser sintering,SLS)增材制造技术制备的试件进行物理试验并对比试验结果,得到不同构型点阵结构胞元的力学性能。最后,以三点弯曲梁为例分析应力分布,并按照应力分布对梁结构进行Octet胞元的变密度点阵结构设计;同时设计均匀点阵结构作为对照,并通过三点弯曲试验对比变密度点阵结构与均匀点阵结构的力学性能。结果表明,优化并重构的4种胞元的三维数值均匀化模拟与压缩试验结果吻合良好;S Star Tet胞元的弹性模量最大,Octet胞元具有最高的剪切模量和较好的各向同性。相较于均匀点阵结构,变密度点阵结构的弯曲刚度和弯曲强度分别提高了162.6%和250.5%。