期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
1
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
2
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 topological optimization Protective structure Genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
3
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 Additive manufacturing Topology optimization Ballistic performance Projectile design
在线阅读 下载PDF
A topology optimization method based on element independent nodal density 被引量:2
4
作者 易继军 曾韬 +1 位作者 荣见华 李艳梅 《Journal of Central South University》 SCIE EI CAS 2014年第2期558-566,共9页
A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit... A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP. 展开更多
关键词 topology optimization element independent nodal density Shepard interpolation parallel computation
在线阅读 下载PDF
Topology optimization of reactive material structures for penetrative projectiles 被引量:1
5
作者 Shinyu Kim Saekyeol Kim +4 位作者 Taekyun Kim Sangin Choi Tae Hee Lee Jung Su Park Sang-Hyun Jung 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1205-1218,共14页
Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging ... Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost. 展开更多
关键词 Reactive material Penetrative projectile Topology optimization Manufacturing constraint Cold gas dynamic spray Additive manufacturing
在线阅读 下载PDF
Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization
6
作者 ZHOU Yun-fei ZOU Lin-er +1 位作者 CHENG Yang-bing SHEN Yun 《中国光学(中英文)》 2025年第6期1475-1483,共9页
Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making ... Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making broadband achromatic infrared imaging challenging to achieve.In this paper,six different unit structures based on chalcogenide glass are constructed,and their phase-dispersion parameters are analyzed to establish a database.On this basis,using chromatic aberration compensation and parameterized adjoint topology optimization,a broadband achromatic metalens with a numerical aperture of 0.5 is designed by arranging these six unit structures in the far-infrared band.Simulation results show that the metalens achieves near diffraction-limited focusing within the operating wavelength range of 9−11μm,demonstrating the good performance of achromatic aberration with flat focusing efficiency of 54%−58%across all wavelengths. 展开更多
关键词 metalens chalcogenide glass topology optimization high efficiency long wave infrared broadband operation
在线阅读 下载PDF
Comparison on construction of strut-and-tie models for reinforced concrete deep beams 被引量:2
7
作者 仇一颗 刘霞 《Journal of Central South University》 SCIE EI CAS 2011年第5期1685-1692,共8页
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee... With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples. 展开更多
关键词 reinforced concrete deep beam topology optimization strut-and-tie model genetic evolutionary structural optimization
在线阅读 下载PDF
Study on Optimal Topology for Computer Local Double Loop Networks
8
作者 Li LayuanWuhan University of Water Transportation Engineering, Wuhan 430063, P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第4期37-52,共16页
A dist ributed optimal local double loop (DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definition... A dist ributed optimal local double loop (DOLDL) network is presented. Emphasis is laid on the topology and distributed routing algorithms for the DOLDL. On the basis of building an abstract model, a set of definitions and theorems are described and proved. An algorithm which can optimize the double loop networks is presented. The optimal values of the topologic parameters for the DOLDL have been obtained by the algorithm, and these numerical results are analyzed. The study shows that the bounds of the optimal diameter d and average hop distance a for this class of networks are [3N- 2]≤d≤[3N ] and (5N/9 (N-1))-(3N -1.8)<a<(5N/9(N-1)) (3N -0.9),respectively (N is the number of nodes in the network ). A class of the distributed routing algorithms for the DOLDL and the implementation procedure of an adaptive fault-tolerant algorithm are proposed and analyzed. The correctness of the algorithm has also been verified by simulating. 展开更多
关键词 Local networks Loop networks Optimal topology Distributed routing algorithm.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部