A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles ...A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.展开更多
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh sti...Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.展开更多
基金Project(52175361)supported by the National Natural Science Foundation of ChinaProject(2019 CFA 041)supported by the Natural Science Foundation of Hubei Province,ChinaProject(WUT:202407002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
基金Project(51575062)supported by the National Natural Science Foundation of ChinaProject(51605049)supported by the National Natural Science Foundation for Young Scholar of ChinaProject(BA2015177)supported by the Science and Technology Achievements Transformation Program of Jiangsu Province of China
文摘Cycloid speed reducers are widely used in many industrial areas due to the advantages of compact size, high reduction ratio and high stiffness. However, currently, there are not many analytical models for the mesh stiffness calculation, which is a crucial parameter for the high-fidelity gear dynamic model. This is partially due to the difficulty of backlash determination and the complexity of multi-tooth contact deformation during the meshing process. In this paper, a new method to calculate the mesh stiffness is proposed including the effects of tooth profile modification and eccentricity error. The time-varying mesh parameters and load distribution of cycloid-pin gear pair are determined based on the unloaded tooth contact analysis (TCA) and the nonlinear Hertzian contact theory, allowing accurate calculations of the contact stiffness of single tooth pair and the torsional stiffness of multi-tooth pairs. A detailed parametric study is presented to demonstrate the influences of tooth profile modification, applied torque and eccentricity error on the torsional mesh stiffness, loaded transmission error, Hertzian contact stiffness and load sharing factor. This model can be applied to further study the lost motion and dynamic characteristics of cycloid speed reducer and assist the optimization of its precision, vibration and noise levels.