AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA scree...AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.展开更多
Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of th...Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.展开更多
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
BACKGROUND:Patients who present to the emergency department(ED)for suspected pulmonary embolism(PE)are often on active oral anticoagulation(AC).However,the diagnostic yield of computed tomography pulmonary angiography...BACKGROUND:Patients who present to the emergency department(ED)for suspected pulmonary embolism(PE)are often on active oral anticoagulation(AC).However,the diagnostic yield of computed tomography pulmonary angiography(CTPA)in screening for PE in patients who present on AC has not been well characterized.We aim to investigate the diagnostic yield of CTPA in diagnosing PE depending on AC status.METHODS:We reviewed and analyzed the electronic medical records of patients who underwent CTPA for PE at a university hospital ED from June 1,2019,to March 25,2022.Primary outcome was the incidence of PE on CTPA depending on baseline AC status and indication for AC.RESULTS:Of 2,846 patients,242 were on AC for a history of venous thromboembolism(VTE),210 were on AC for other indications,and 2,394 were not on AC.The incidence of PE on CTPA was significantly lower in patients on AC for other indications(5.7%)when compared to patients on AC for prior VTE(24.3%)and patients not on AC at presentation(9.8%)(P<0.001).In multivariable analysis among the whole cohort,AC was associated with a positive CTPA(odds ratio[OR]0.26,95%confidence interval[CI]:0.15-0.45,P<0.001).CONCLUSION:The incidence of PE among patients undergoing CTPA in the ED is lower in patients previously on AC for indications other than VTE when compared to those not on AC or those on AC for history of VTE.AC status and indication for AC may affect pre-test probability of a positive CTPA,and AC status therefore warrants consideration as part of future diagnostic algorithms among patients with suspected PE.展开更多
An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to rec...An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy.展开更多
Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In thi...Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.展开更多
Objective To explore the perihematomal perfusion typing and spot sign on computed tomography angiography(CTA) source images in order to assist in individualizing therapeutic decisions for patients with intracerebral h...Objective To explore the perihematomal perfusion typing and spot sign on computed tomography angiography(CTA) source images in order to assist in individualizing therapeutic decisions for patients with intracerebral hemorrhage by possibly forecasting perihematomal ischemia and hematoma enlargement. Methods We examined 58 patients with spontaneous intracerebral hemorrhage by computed tomography perfusion and CTA within 6 hours after symptom onset. Hematoma volumes were determined from non-contrast CT images and compared between first and second CT images. The perfusion of hematoma region and perihematoma region was evaluated for presence or absence of the perihematomal penumbra. Three kinds of perihematoma perfusion typing were defined according to the perfusion of hematoma region and perihematoma region. CTA source images was reviewed to make sure presence or absence of the spot sign. Results Finally, 53 patients(34 males, 19 females) were enrolled in our study according to exclusion criteria. Finally, 21 patients were classified into the normal group, 23 patients were classified into the mild group, and 9 patients were classified into the severe group. There were significant differences in hematoma size between the presence and absence of the perihematomal penumbra group(P<0.05). Thirteen(24.5%) patients presented with spot sign. Hematoma expansion occurred in 15(28.3%) patients on follow-up. In which 12 patients were with spot sign. Sensitivity, specificity, positive predictive value, and negative predictive value for expansion were 80.0%, 97.4%, 92.3%, and 92.5%, respectively. Conclusion In acute intracerebral hemorrhage patients, the perihematoma perfusion typing and CTA spot sign provide more radiological information that might assist in individualizing therapeutic decisions for patients by possibly forecasting perihematomal ischemia and hematoma enlargement.展开更多
A newly developed Doppler coherence imaging spectroscopy(CIS)technique has been implemented in the HL-2 A tokamak for carbon impurity emissivity and flow measurement.In CIS diagnostics,the emissivity and flow profiles...A newly developed Doppler coherence imaging spectroscopy(CIS)technique has been implemented in the HL-2 A tokamak for carbon impurity emissivity and flow measurement.In CIS diagnostics,the emissivity and flow profiles inside the plasma are measured by a camera from the line-integrated emissivity and line-averaged flow,respectively.A standard inference method,called tomographic inversion,is necessary.Such an inversion is relatively challenging due to the ill-conditioned nature.In this article,we report the recent application and comparison of two different tomography algorithms,Gaussian process tomography and Tikhonov tomography,on light intensity measured by CIS,including feasibility and benchmark studies.Finally,the tomographic results for real measurement data in HL-2A are presented.展开更多
The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography...The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography.展开更多
Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In th...Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.展开更多
Microstructure of shale formation is the key to understanding its petrophysical and chemical properties.Optical microscopy, scanning electron microscopy and micro-computed tomography(μ-CT) have been combined for char...Microstructure of shale formation is the key to understanding its petrophysical and chemical properties.Optical microscopy, scanning electron microscopy and micro-computed tomography(μ-CT) have been combined for characterization of microstructure of Longmaxi(LMX)shale from Shizhu area, Sichan Basin. The results indicate that laminated LMX shale consists of mineral matrix-rich layers and organic matter(OM)-rich layers at micrometer scale in two and three dimensions. Mineral matrix layers,mainly consisting of interparticle pores and intraplatelet pores, are approximately parallel to the bedding plane.Pyrite-rich layer, mainly containing intercrystalline pores,shows a strong preferred orientation parallel to the bedding plane. OM-rich layer, mainly containing OM pores, seems to be discontinuous. In addition, intercrystalline pores are enriched in some layers, while OM pores are distributed irregularly in matrix layers. This vertical heterogeneity of pore microscopic structures in LMX shale is of great importance to understand its petrophysical and chemical properties.展开更多
In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area o...In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.展开更多
Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomogr...Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.展开更多
An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiatio...An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.展开更多
Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislic...Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislice CT scanners over the last decade have allowed this technique to become a potentially effective alternative to invasive coronary angiography in patients with suspected coronary artery disease. High diagnostic value has been achieved with multislice CT angiography with use of 64- and more slice CT scanners. In addition, multislice CT angiography shows accurate detection and analysis of coronary calcium, characterization of coronary plaques, as well as prediction of the disease progression and major cardiac events. Thus, patients can benefit from multislice CT angiography that provides a rapid and accurate diagnosis while avoiding unnecessary invasive coronary angiography procedures. The aim of this article is present an overview of the clinical applications of multislice CT angiography in coronary artery disease with a focus on the diagnostic accuracy of coronary artery disease; prognostic value of coronary artery disease with regard to the prediction of major cardiac events; detection and quantification of coronary calcium and characterization of coronary plaques. Limitations of multislice CT angiography in coronary artery disease are also briefly discussed, and future directions are highlighted.展开更多
A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interac...A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interaction between optical signal and ultrasound wave,exhibiting a high sensitivity of 3.5 mV/kPa,which is approximately 10 times higher than the single-mode fiber sensor.Meanwhile,a phase feedback stabilization module is introduced into the coherent demodulation system for long-term stable measurement.In addition,a photoacoustic tomography experiment with the microfiber ultrasound sensor is implemented to verify the excellent performance on imaging,with the depth of 12 mm,the highest lateral resolution of 65μm and axial resolution of 250μm,respectively.The highly sensitive microfiber ultrasound sensor provides a competitive alternative for various applications,such as industrial non-destructive testing,biomedical ultrasound and photoacoustic imaging.展开更多
Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a f...Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies,which has led to its potential clinical use. This qualitative review provides an overview of the basic principles,algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy,stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth,from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry,inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.展开更多
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ...In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.展开更多
Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include m...Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include muon radiography and muon tomography.A previously studied method known as coinciding muon trajectory density tomography,which utilizes muonic secondary particles,is proposed to image low and medium atomic number(Z)materials.However,scattering tomography is mostly used to image high-Z materials,and coinciding muon trajectory density tomography exhibits a hollow phenomenon in the imaging results owing to the self-absorption effect.To address the shortcomings of the individual imaging methods,hybrid model tomography combining scattering tomography and coinciding muon trajectory density tomography is proposed and verified.In addition,the peak signal-to-noise ratio was introduced to quantitatively analyze the image quality.Different imaging models were simulated using the Geant4 toolkit to confirm the advantages of this innovative method.The simulation results showed that hybrid model tomography can image centimeter-scale materials with low,medium,and high Z simultaneously.For high-Z materials with similar atomic numbers,this method can clearly distinguish those with apparent differences in density.According to the peak signal-to-noise ratio of the analysis,the reconstructed image quality of the new method was significantly higher than that of the individual imaging methods.This study provides a reliable approach to the compatibility of scattering tomography and coinciding muon trajectory density tomography.展开更多
By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial res...By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.展开更多
文摘AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.
基金supported by the National Natural Science Foundation of China(Nos.12375157,12027902,and 11905011)。
文摘Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
文摘BACKGROUND:Patients who present to the emergency department(ED)for suspected pulmonary embolism(PE)are often on active oral anticoagulation(AC).However,the diagnostic yield of computed tomography pulmonary angiography(CTPA)in screening for PE in patients who present on AC has not been well characterized.We aim to investigate the diagnostic yield of CTPA in diagnosing PE depending on AC status.METHODS:We reviewed and analyzed the electronic medical records of patients who underwent CTPA for PE at a university hospital ED from June 1,2019,to March 25,2022.Primary outcome was the incidence of PE on CTPA depending on baseline AC status and indication for AC.RESULTS:Of 2,846 patients,242 were on AC for a history of venous thromboembolism(VTE),210 were on AC for other indications,and 2,394 were not on AC.The incidence of PE on CTPA was significantly lower in patients on AC for other indications(5.7%)when compared to patients on AC for prior VTE(24.3%)and patients not on AC at presentation(9.8%)(P<0.001).In multivariable analysis among the whole cohort,AC was associated with a positive CTPA(odds ratio[OR]0.26,95%confidence interval[CI]:0.15-0.45,P<0.001).CONCLUSION:The incidence of PE among patients undergoing CTPA in the ED is lower in patients previously on AC for indications other than VTE when compared to those not on AC or those on AC for history of VTE.AC status and indication for AC may affect pre-test probability of a positive CTPA,and AC status therefore warrants consideration as part of future diagnostic algorithms among patients with suspected PE.
基金supported by the National MCF Energy R&D Program of China (Nos. 2018 YFE0301105, 2022YFE03010002 and 2018YFE0302100)the National Key R&D Program of China (Nos. 2022YFE03070004 and 2022YFE03070000)National Natural Science Foundation of China (Nos. 12205195, 12075155 and 11975277)
文摘An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51137004 and 61427806)the Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences(Grant No.YZ201507)the China Scholarship Council(Grant No.201604910849)
文摘Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.
文摘Objective To explore the perihematomal perfusion typing and spot sign on computed tomography angiography(CTA) source images in order to assist in individualizing therapeutic decisions for patients with intracerebral hemorrhage by possibly forecasting perihematomal ischemia and hematoma enlargement. Methods We examined 58 patients with spontaneous intracerebral hemorrhage by computed tomography perfusion and CTA within 6 hours after symptom onset. Hematoma volumes were determined from non-contrast CT images and compared between first and second CT images. The perfusion of hematoma region and perihematoma region was evaluated for presence or absence of the perihematomal penumbra. Three kinds of perihematoma perfusion typing were defined according to the perfusion of hematoma region and perihematoma region. CTA source images was reviewed to make sure presence or absence of the spot sign. Results Finally, 53 patients(34 males, 19 females) were enrolled in our study according to exclusion criteria. Finally, 21 patients were classified into the normal group, 23 patients were classified into the mild group, and 9 patients were classified into the severe group. There were significant differences in hematoma size between the presence and absence of the perihematomal penumbra group(P<0.05). Thirteen(24.5%) patients presented with spot sign. Hematoma expansion occurred in 15(28.3%) patients on follow-up. In which 12 patients were with spot sign. Sensitivity, specificity, positive predictive value, and negative predictive value for expansion were 80.0%, 97.4%, 92.3%, and 92.5%, respectively. Conclusion In acute intracerebral hemorrhage patients, the perihematoma perfusion typing and CTA spot sign provide more radiological information that might assist in individualizing therapeutic decisions for patients by possibly forecasting perihematomal ischemia and hematoma enlargement.
文摘A newly developed Doppler coherence imaging spectroscopy(CIS)technique has been implemented in the HL-2 A tokamak for carbon impurity emissivity and flow measurement.In CIS diagnostics,the emissivity and flow profiles inside the plasma are measured by a camera from the line-integrated emissivity and line-averaged flow,respectively.A standard inference method,called tomographic inversion,is necessary.Such an inversion is relatively challenging due to the ill-conditioned nature.In this article,we report the recent application and comparison of two different tomography algorithms,Gaussian process tomography and Tikhonov tomography,on light intensity measured by CIS,including feasibility and benchmark studies.Finally,the tomographic results for real measurement data in HL-2A are presented.
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11422439,11274167,and 11274171)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20120091110001)
文摘The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography.
文摘Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB1002010)the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology(No.12JC1410400)the National Natural Science Foundation of China for Distinguished Young Scholars(No.41325016)
文摘Microstructure of shale formation is the key to understanding its petrophysical and chemical properties.Optical microscopy, scanning electron microscopy and micro-computed tomography(μ-CT) have been combined for characterization of microstructure of Longmaxi(LMX)shale from Shizhu area, Sichan Basin. The results indicate that laminated LMX shale consists of mineral matrix-rich layers and organic matter(OM)-rich layers at micrometer scale in two and three dimensions. Mineral matrix layers,mainly consisting of interparticle pores and intraplatelet pores, are approximately parallel to the bedding plane.Pyrite-rich layer, mainly containing intercrystalline pores,shows a strong preferred orientation parallel to the bedding plane. OM-rich layer, mainly containing OM pores, seems to be discontinuous. In addition, intercrystalline pores are enriched in some layers, while OM pores are distributed irregularly in matrix layers. This vertical heterogeneity of pore microscopic structures in LMX shale is of great importance to understand its petrophysical and chemical properties.
文摘In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.
文摘Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant No. 10974098), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009407), and the Specialized Research Fund for Doctoral Program of High Education of China (Grant No. 20093207120003).
文摘An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.
文摘Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislice CT scanners over the last decade have allowed this technique to become a potentially effective alternative to invasive coronary angiography in patients with suspected coronary artery disease. High diagnostic value has been achieved with multislice CT angiography with use of 64- and more slice CT scanners. In addition, multislice CT angiography shows accurate detection and analysis of coronary calcium, characterization of coronary plaques, as well as prediction of the disease progression and major cardiac events. Thus, patients can benefit from multislice CT angiography that provides a rapid and accurate diagnosis while avoiding unnecessary invasive coronary angiography procedures. The aim of this article is present an overview of the clinical applications of multislice CT angiography in coronary artery disease with a focus on the diagnostic accuracy of coronary artery disease; prognostic value of coronary artery disease with regard to the prediction of major cardiac events; detection and quantification of coronary calcium and characterization of coronary plaques. Limitations of multislice CT angiography in coronary artery disease are also briefly discussed, and future directions are highlighted.
基金financial supports from National Natural Science Foundation of China (NSFC)(No.61922033)Foundation for Innovative Research Groups of Hubei Province of China (2018CFA004)Innovation Fund of WNLO
文摘A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interaction between optical signal and ultrasound wave,exhibiting a high sensitivity of 3.5 mV/kPa,which is approximately 10 times higher than the single-mode fiber sensor.Meanwhile,a phase feedback stabilization module is introduced into the coherent demodulation system for long-term stable measurement.In addition,a photoacoustic tomography experiment with the microfiber ultrasound sensor is implemented to verify the excellent performance on imaging,with the depth of 12 mm,the highest lateral resolution of 65μm and axial resolution of 250μm,respectively.The highly sensitive microfiber ultrasound sensor provides a competitive alternative for various applications,such as industrial non-destructive testing,biomedical ultrasound and photoacoustic imaging.
基金supported by the National Natural Science Foundation of China (81773353)Jilin Scientific and Technological Development Program (20200404148YY, 20200601005JC, 20210101317JC)+2 种基金Jilin Province Special Projec t of Medical and Health Talents (JLSCZD2019-032)the Research Funding Program of Norman Bethune Biomedical Engineering Center (BQEGCZX2019025)National College Students Innovation and Entrepreneurship Training Program (CN)(202010183691)。
文摘Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography(EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies,which has led to its potential clinical use. This qualitative review provides an overview of the basic principles,algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy,stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth,from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry,inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.
基金This work is supported by the National Natural Science Foundation of China(Nos.51804099 and U1704129)the Focus Research and Special Development for Scientific and Technological Project of Henan Province(No.202102310542)+1 种基金the Fundamental Research Funds for the Central Universities(No.2018ZDPY02ZDPY02)the research fund of State Key Laboratory of Coal Resources and Safe Mining,CUMT(SKLCRSM19KF011).
文摘In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.
基金supported by the National Natural Science Foundation of China(No.11875163)Natural Science Foundation of Hunan Province(Nos.2021JJ20006 and 2021JJ40444)+1 种基金Ministry of Science and Technology of China(No.2020YFE0202001)Department of Education of Hunan Province(Nos.19B488 and 21A0281)。
文摘Muon tomography is a novel method for the non-destructive imaging of materials based on muon rays,which are highly penetrating in natural background radiation.Currently,the most commonly used imaging methods include muon radiography and muon tomography.A previously studied method known as coinciding muon trajectory density tomography,which utilizes muonic secondary particles,is proposed to image low and medium atomic number(Z)materials.However,scattering tomography is mostly used to image high-Z materials,and coinciding muon trajectory density tomography exhibits a hollow phenomenon in the imaging results owing to the self-absorption effect.To address the shortcomings of the individual imaging methods,hybrid model tomography combining scattering tomography and coinciding muon trajectory density tomography is proposed and verified.In addition,the peak signal-to-noise ratio was introduced to quantitatively analyze the image quality.Different imaging models were simulated using the Geant4 toolkit to confirm the advantages of this innovative method.The simulation results showed that hybrid model tomography can image centimeter-scale materials with low,medium,and high Z simultaneously.For high-Z materials with similar atomic numbers,this method can clearly distinguish those with apparent differences in density.According to the peak signal-to-noise ratio of the analysis,the reconstructed image quality of the new method was significantly higher than that of the individual imaging methods.This study provides a reliable approach to the compatibility of scattering tomography and coinciding muon trajectory density tomography.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1083)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.