为准确选取模拟节理岩体结构面产状互相关性的Copula函数,提出了不同拟合指标下模拟节理岩体结构面产状的Copula函数方法,通过采用最小平方欧式、AIC(Akaike information criterion)信息准则、BIC(Bayesian information criterion)信息...为准确选取模拟节理岩体结构面产状互相关性的Copula函数,提出了不同拟合指标下模拟节理岩体结构面产状的Copula函数方法,通过采用最小平方欧式、AIC(Akaike information criterion)信息准则、BIC(Bayesian information criterion)信息准则这3种拟合指标确定各自的最优Copula函数并通过MATLAB确定实测产状数据的最优边缘分布,建立倾角和倾向的二维联合分布函数。同时结合蒙特卡洛抽样法自动生成模拟数据,将数据导入Dips软件中进行可视化处理,得到产状的赤平投影图,对比实测的倾角和倾向数据和不同拟合指标下确定的Copula函数模拟数据间的差异。最后,基于工程案例检验方法的有效性。结果表明:不同的拟合指标会产生不同的Copula函数,对模拟产状的有效性也会有较大差异,若是选择不当的拟合指标可能导致选择不准确的Copula函数,从而使模型无法准确地捕捉数据的相关结构和特征;不适当的拟合指标可能导致拟合模型与真实数据之间存在较大的误差,使得模型的预测能力和解释能力下降,就本文案例表明在最小平方欧式值拟合指标下选择的Gaussian Copula函数拟合实测数据效果最好。此研究将有助在应用Coupla函数时选用恰当的拟合指标。展开更多
在林业研究中,胸径-树高二元联合分布多由相同边缘分布构造,而林分的胸径与树高的实际分布状况可能有所差异。为降低这种差异带来的影响,依据佳木斯市孟家岗林场的115块长白落叶松人工林数据,选择适用条件低、适应范围广的Copula函数方...在林业研究中,胸径-树高二元联合分布多由相同边缘分布构造,而林分的胸径与树高的实际分布状况可能有所差异。为降低这种差异带来的影响,依据佳木斯市孟家岗林场的115块长白落叶松人工林数据,选择适用条件低、适应范围广的Copula函数方法拟合落叶松胸径-树高二元联合分布模型。首先选择威布尔(Weibull)、广义威布尔(G-Weibull)、逻辑斯蒂(Logistic)、轻量逻辑斯蒂(Logit-Logistic)、伽马(Gamma)、对数正态(Log-Normal)6个分布函数作为备选基础模型,根据K-S(kolmogorov smirnov test)检验与半参数估计结果筛选并构建Copula胸径-树高二元联合分布模型,再通过负对数似然(negative log-likelihood,NLL)、Sn拟合优度统计量和似然比检验(likelihood ratio test,LRT)与二元对数logistic分布函数和二元Weibull分布函数进行比较,最后使用雷诺误差指数(error index of Reynolds,EI)对模型预测能力进行评估。结果表明,基于Copula函数的二元分拟合结果与模型(EI=0.3184)预估能力皆优于二元Weibull分布(EI=0.6381)和二元对数Logistic分布(EI=0.9490),说明此方法构建胸径-树高二元联合Copula分布模型能够很好地描述落叶松人工林胸径树高联合分布,以Copula方法构建树高-胸径联合分布是可行的。展开更多
文摘为准确选取模拟节理岩体结构面产状互相关性的Copula函数,提出了不同拟合指标下模拟节理岩体结构面产状的Copula函数方法,通过采用最小平方欧式、AIC(Akaike information criterion)信息准则、BIC(Bayesian information criterion)信息准则这3种拟合指标确定各自的最优Copula函数并通过MATLAB确定实测产状数据的最优边缘分布,建立倾角和倾向的二维联合分布函数。同时结合蒙特卡洛抽样法自动生成模拟数据,将数据导入Dips软件中进行可视化处理,得到产状的赤平投影图,对比实测的倾角和倾向数据和不同拟合指标下确定的Copula函数模拟数据间的差异。最后,基于工程案例检验方法的有效性。结果表明:不同的拟合指标会产生不同的Copula函数,对模拟产状的有效性也会有较大差异,若是选择不当的拟合指标可能导致选择不准确的Copula函数,从而使模型无法准确地捕捉数据的相关结构和特征;不适当的拟合指标可能导致拟合模型与真实数据之间存在较大的误差,使得模型的预测能力和解释能力下降,就本文案例表明在最小平方欧式值拟合指标下选择的Gaussian Copula函数拟合实测数据效果最好。此研究将有助在应用Coupla函数时选用恰当的拟合指标。
文摘在林业研究中,胸径-树高二元联合分布多由相同边缘分布构造,而林分的胸径与树高的实际分布状况可能有所差异。为降低这种差异带来的影响,依据佳木斯市孟家岗林场的115块长白落叶松人工林数据,选择适用条件低、适应范围广的Copula函数方法拟合落叶松胸径-树高二元联合分布模型。首先选择威布尔(Weibull)、广义威布尔(G-Weibull)、逻辑斯蒂(Logistic)、轻量逻辑斯蒂(Logit-Logistic)、伽马(Gamma)、对数正态(Log-Normal)6个分布函数作为备选基础模型,根据K-S(kolmogorov smirnov test)检验与半参数估计结果筛选并构建Copula胸径-树高二元联合分布模型,再通过负对数似然(negative log-likelihood,NLL)、Sn拟合优度统计量和似然比检验(likelihood ratio test,LRT)与二元对数logistic分布函数和二元Weibull分布函数进行比较,最后使用雷诺误差指数(error index of Reynolds,EI)对模型预测能力进行评估。结果表明,基于Copula函数的二元分拟合结果与模型(EI=0.3184)预估能力皆优于二元Weibull分布(EI=0.6381)和二元对数Logistic分布(EI=0.9490),说明此方法构建胸径-树高二元联合Copula分布模型能够很好地描述落叶松人工林胸径树高联合分布,以Copula方法构建树高-胸径联合分布是可行的。