Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nul...Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing(EAEP)was a critical step to break the oil-rich emulsion structure in order to recover oil.Albeit EAEP metho...The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing(EAEP)was a critical step to break the oil-rich emulsion structure in order to recover oil.Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method,the structure morphology of oil-rich emulsion was still unclear.The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3 D confocal Raman imaging technique.With increasing the enzymatic hydrolysis duration from 1 to 3 h,the stability of oil-rich emulsion was decreased as visualized in the 3 D confocal Raman images that the protein and oil were mixed together.The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions.The conformational transfer in protein indicated the formation of a compact structure.展开更多
文摘Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.
基金the financial support received from National Natural Science Foundation of China(No.31430067 and 31601475)China Postdoctoral Science Foundation funded project(No.2017M610200)Heilongjiang Postdoctoral Foundation(No.LBH-Z17011)
文摘The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing(EAEP)was a critical step to break the oil-rich emulsion structure in order to recover oil.Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method,the structure morphology of oil-rich emulsion was still unclear.The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3 D confocal Raman imaging technique.With increasing the enzymatic hydrolysis duration from 1 to 3 h,the stability of oil-rich emulsion was decreased as visualized in the 3 D confocal Raman images that the protein and oil were mixed together.The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions.The conformational transfer in protein indicated the formation of a compact structure.