期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The AVO Effect of Formation Pressure on Time-Lapse Seismic Monitoring in Marine Carbon Dioxide Storage
1
作者 Fan Wu Qingping Li +1 位作者 Yufa He Jingye Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期645-655,共11页
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio... The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs. 展开更多
关键词 time-lapse seismic monitoring Marine carbon dioxide storage AVO modeling Formation pressure Anisotropic Rockphysical model
在线阅读 下载PDF
Purposeless repeated acquisition time-lapse seismic data processing 被引量:4
2
作者 Li Jingye Chen Xiaohong +1 位作者 Zhao Wei Zhang Yunpeng 《Petroleum Science》 SCIE CAS CSCD 2008年第1期31-36,共6页
In China, most oil fields are continental sedimentation with strong heterogeneity, which on one side makes the reservoir prospecting and development more difficult, but on the other side provides more space for search... In China, most oil fields are continental sedimentation with strong heterogeneity, which on one side makes the reservoir prospecting and development more difficult, but on the other side provides more space for searching residual oil in matured fields. Time-lapse seismic reservoir monitoring technique is one of most important techniques to define residual oil distribution. According to the demand for and development of time-lapse seismic reservoir monitoring in China, purposeless repeated acquisition time-lapse seismic data processing was studied. The four key steps in purposeless repeated acquisition time-lapse seismic data processing, including amplitude-preserved processing with relative consistency, rebinning, match filtering and difference calculation, were analyzed by combining theory and real seismic data processing. Meanwhile, quality control during real time-lapse seismic processing was emphasized. 展开更多
关键词 time-lapse seismic purposeless repeated acquisition rebinning match filtering amplitude-preserved processing
在线阅读 下载PDF
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:2
3
作者 Fu-Bin Chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 Monitoring change in horizontal stress Multi-wave reflection coefficients Nonlinear elasticity theory time-lapse seismic data
在线阅读 下载PDF
Quantitative prediction of oil saturation of unconsolidated sandstone reservoir based on time-lapse seismic “relative difference method”: Taking Zeta oil field in West Africa as an example
4
作者 LU Hongmei XU Hai +1 位作者 WO Yujin GU Ning 《Petroleum Exploration and Development》 2019年第2期426-434,共9页
In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the... In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective. 展开更多
关键词 time-lapse seismic remaining OIL quantitative prediction unconsolidated sandstone reservoir fluid displacement absolute DIFFERENCE RELATIVE DIFFERENCE ZETA OIL field WEST AFRICA
在线阅读 下载PDF
Monitoring of steam chamber in steam-assisted gravity drainage based on the temperature sensitivity of oil sand
5
作者 GAO Yunfeng FAN Ting’en +4 位作者 GAO Jinghuai LI Hui DONG Hongchao MA Shigang YUE Qingfeng 《Petroleum Exploration and Development》 CSCD 2021年第6期1411-1419,共9页
Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assi... Thermosensitivity experiments and simulation calculations were conducted on typical oil sand core samples from Kinosis,Canada to predict the steam chamber development with time-lapse seismic data during the steam-assisted gravity drain-age(SAGD).Using an ultrasonic base made of polyether ether ketone resin instead of titanium alloy can improve the signal en-ergy and signal-to-noise ratio and get clear first arrival;with the rise of temperature,heavy oil changes from glass state(at-34.4℃),to quasi-solid state,and to liquid state(at 49.0℃)gradually;the quasi-solid heavy oil has significant frequency dis-persion.For the sand sample with high oil saturation,its elastic property depends mainly on the nature of the heavy oil,while for the sand sample with low oil saturation,the elastic property depends on the stiffness of the rock matrix.The elastic property of the oil sand is sensitive to temperature noticeably,when the temperature increases from 10℃ to 175℃,the oil sand samples decrease in compressional and shear wave velocities significantly.Based on the experimental data,the quantita-tive relationship between the compressional wave impedance of the oil sand and temperature was worked out,and the tem-perature variation of the steam chamber in the study area was predicted by time-lapse seismic inversion. 展开更多
关键词 oil sand temperature sensitivity rock physical properties SAGD steam chamber time-lapse seismic survey
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部