The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met...The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.展开更多
The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.I...The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.In this paper,we propose an information spreading-based method to calculate the shortest paths distribution in temporal networks.We verify our method on both artificial and real-world temporal networks and obtain a good agreement.We further generalize our method to identify influential nodes and found an effective method.Finally,we verify the influential nodes identifying method on four networks.展开更多
On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP ...On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP pipelining algorithm makes full use of overlapping technique between computation and communication. Compared with broadcast operation, the parallel algorithm reduces communication cost. This algorithm has been implemented on MPI on PC-cluster. The theoretical analysis and experimental results show that the parallel algorithm is an efficient and scalable algorithm.展开更多
Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be rela...Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be related to how the real system evolves or how individuals interact with each other in social networks.Although the evolution of the real system may seem to be found regularly,capturing patterns on the whole process of evolution is not trivial.Link prediction is one of the most important technologies in network information mining,which can help us understand the evolution mechanism of real-life network.Link prediction aims to uncover missing links or quantify the likelihood of the emergence of nonexistent links from known network structures.Currently,widely existing methods of link prediction almost focus on short-path networks that usually have a myriad of close triangular structures.However,these algorithms on highly sparse or longpath networks have poor performance.Here,we propose a new index that is associated with the principles of structural equivalence and shortest path length(SESPL)to estimate the likelihood of link existence in long-path networks.Through a test of 548 real networks,we find that SESPL is more effective and efficient than other similarity-based predictors in long-path networks.Meanwhile,we also exploit the performance of SESPL predictor and of embedding-based approaches via machine learning techniques.The results show that the performance of SESPL can achieve a gain of 44.09%over GraphWave and 7.93%over Node2vec.Finally,according to the matrix of maximal information coefficient(MIC)between all the similarity-based predictors,SESPL is a new independent feature in the space of traditional similarity features.展开更多
Shortest-path calculation on weighted graphs are an essential operation in computer networks. The performance of such algorithms has become a critical challenge in emerging software-defined networks(SDN),since SDN con...Shortest-path calculation on weighted graphs are an essential operation in computer networks. The performance of such algorithms has become a critical challenge in emerging software-defined networks(SDN),since SDN controllers need to centralizedly perform a shortest-path query for every flow,usually on large-scale network. Unfortunately,one of the challenges is that current algorithms will become incalculable as the network size increases. Therefore, inspired by the compression graph in the field of compute visualization,we propose an efficient shortest path algorithm by compressing the original big network graph into a small one, but the important graph properties used to calculate path is reserved. We implement a centralized version of our approach in SDN-enabled network,and the evaluations validate the improvement compared with the well-known algorithms.展开更多
Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes t...Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain.As a consequence,the average and median distances in any such network are smaller than or equal to those of a chain.Research limitations:We restricted our investigations to undirected,unweighted networks.Practical implications:We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property.Originality/value:To the best of our knowledge our research contains new network results,especially those related to frequencies of distances.展开更多
Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clo...Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60672095)the National High-Tech Research and Development Program of China (Grant No 2007AA11Z210)+3 种基金the Doctoral Fund of Ministry of Education of China (Grant No 20070286004)the Natural Science Foundation of Jiangsu Province,China (Grant No BK2008281)the Science and Technology Program of Southeast University,China (Grant No KJ2009351)the Excellent Young Teachers Program of Southeast University,China (Grant No BG2007428)
文摘The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.61903266)China Postdoctoral Science Foundation(Grant No.2018M631073)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2019T120829)the Fundamental Research Funds for the Central Universities,ChinaSichuan Science and Technology Program,China(Grant No.20YYJC4001)。
文摘The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.In this paper,we propose an information spreading-based method to calculate the shortest paths distribution in temporal networks.We verify our method on both artificial and real-world temporal networks and obtain a good agreement.We further generalize our method to identify influential nodes and found an effective method.Finally,we verify the influential nodes identifying method on four networks.
基金the National Natural Science Foundation of China under Grant No. 60671033.
文摘On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP pipelining algorithm makes full use of overlapping technique between computation and communication. Compared with broadcast operation, the parallel algorithm reduces communication cost. This algorithm has been implemented on MPI on PC-cluster. The theoretical analysis and experimental results show that the parallel algorithm is an efficient and scalable algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61773091 and 62173065)the Industry-University-Research Innovation Fund for Chinese Universities(Grant No.2021ALA03016)+2 种基金the Fund for University Innovation Research Group of Chongqing(Grant No.CXQT21005)the National Social Science Foundation of China(Grant No.20CTQ029)the Fundamental Research Funds for the Central Universities(Grant No.SWU119062).
文摘Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be related to how the real system evolves or how individuals interact with each other in social networks.Although the evolution of the real system may seem to be found regularly,capturing patterns on the whole process of evolution is not trivial.Link prediction is one of the most important technologies in network information mining,which can help us understand the evolution mechanism of real-life network.Link prediction aims to uncover missing links or quantify the likelihood of the emergence of nonexistent links from known network structures.Currently,widely existing methods of link prediction almost focus on short-path networks that usually have a myriad of close triangular structures.However,these algorithms on highly sparse or longpath networks have poor performance.Here,we propose a new index that is associated with the principles of structural equivalence and shortest path length(SESPL)to estimate the likelihood of link existence in long-path networks.Through a test of 548 real networks,we find that SESPL is more effective and efficient than other similarity-based predictors in long-path networks.Meanwhile,we also exploit the performance of SESPL predictor and of embedding-based approaches via machine learning techniques.The results show that the performance of SESPL can achieve a gain of 44.09%over GraphWave and 7.93%over Node2vec.Finally,according to the matrix of maximal information coefficient(MIC)between all the similarity-based predictors,SESPL is a new independent feature in the space of traditional similarity features.
基金supported by the National Natural Science Foundation of China(No.61521003)
文摘Shortest-path calculation on weighted graphs are an essential operation in computer networks. The performance of such algorithms has become a critical challenge in emerging software-defined networks(SDN),since SDN controllers need to centralizedly perform a shortest-path query for every flow,usually on large-scale network. Unfortunately,one of the challenges is that current algorithms will become incalculable as the network size increases. Therefore, inspired by the compression graph in the field of compute visualization,we propose an efficient shortest path algorithm by compressing the original big network graph into a small one, but the important graph properties used to calculate path is reserved. We implement a centralized version of our approach in SDN-enabled network,and the evaluations validate the improvement compared with the well-known algorithms.
文摘Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain.As a consequence,the average and median distances in any such network are smaller than or equal to those of a chain.Research limitations:We restricted our investigations to undirected,unweighted networks.Practical implications:We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property.Originality/value:To the best of our knowledge our research contains new network results,especially those related to frequencies of distances.
基金supported by the National Natural Science Foundation of China(Nos.32171789,32211530031,12411530088)the National Key Research and Development Program of China(No.2023YFF1303901)+2 种基金the Joint Open Funded Project of State Key Laboratory of Geo-Information Engineering and Key Laboratory of the Ministry of Natural Resources for Surveying and Mapping Science and Geo-spatial Information Technology(2022-02-02)Background Resources Survey in Shennongjia National Park(SNJNP2022001)the Open Project Fund of Hubei Provincial Key Laboratory for Conservation Biology of Shennongjia Snub-nosed Monkeys(SNJGKL2022001).
文摘Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.