期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
1
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于EMD-KPCA-LSTM与SVG控制的双馈风电系统次同步振荡抑制方法
2
作者 张旭 徐鑫 +1 位作者 董成武 张继龙 《电气工程学报》 北大核心 2025年第2期54-67,共14页
静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分... 静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分解(Empirical mode decomposition, EMD)、核主成分分析(Kernel principal component analysis, KPCA)、长短期记忆网络(Long short-term memory, LSTM)与SVG附加阻尼控制的次同步振荡抑制方法。首先,通过EMD提取系统的振荡特征,利用KPCA进行降维优化,进一步通过LSTM对系统的动态特性进行建模与预测,从而显著提高了预测精度。在此基础上,结合SVG的附加阻尼控制功能,实时调节SVG的控制信号,有效抑制次同步振荡,提升系统的稳定性。该方法的创新在于将信号处理技术与深度学习算法相结合,构建了一个高效的预测与控制框架,为传统控制策略提供了全新思路。最后,利用PSCAD进行仿真分析,验证了该方法的有效性,为高渗透率新能源电网的稳定运行提供了技术支持。 展开更多
关键词 次同步振荡 经验模态分解 长短期记忆网络 双馈风电系统 静止无功发生器 核主成分分析
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
3
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于ICEEMDAN-KPCA-ICPA-LSTM的光伏发电功率预测 被引量:2
4
作者 姚钦才 向文国 +2 位作者 陈时熠 曹敬 郑涛 《动力工程学报》 北大核心 2025年第3期374-382,共9页
光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法... 光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法。首先,该方法通过ICEEMDAN提取气象数据中非线性信号的隐含特征;其次,采用核主成分分析降低分解后产生的冗余信息,并根据主成分贡献率大小选取模型输入参数;最后,对食肉植物算法(CPA)进行改进,构建ICPA-LSTM模型,并开展了晴天、雨天、多云和多变天气4种典型天气类型下光伏发电功率预测校验。结果表明:在不同天气情况下,所提模型的决定系数R 2均大于99%,相较于对照模型具有更好的预测性能。 展开更多
关键词 光伏发电预测 ICEEMDAN 长短期记忆网络 食肉植物算法 核主成分分析
在线阅读 下载PDF
含有时间依赖记忆核的非线性发展方程的一种特殊收敛性
5
作者 王思博 姜金平 王雪 《应用数学》 北大核心 2025年第4期915-931,共17页
本文研究一类具有时间依赖记忆核的非线性发展方程的长时间动力学行为,首先利用渐近正则估计证明了含有时间依赖记忆核的非线性发展方程全局吸引子的存在性和正则性.其次证明了当k_(t)→mδ_(0)时,该方程收敛到一类非线性发展方程.
关键词 非线性发展方程 时间依赖全局吸引子 拉回吸收集 时间依赖记忆核
在线阅读 下载PDF
基于冠豪猪优化CNN-BiLSTM和核密度估计的月径流区间预测
6
作者 吴小涛 郭欣 +3 位作者 袁晓辉 晏莉娟 曾志强 陆涛 《长江科学院院报》 北大核心 2025年第9期51-57,66,共8页
径流预测对水资源合理配置、制定水力发电计划等非常重要,针对月径流点预测精度不高以及点预测结果难以描述月径流不确定性等问题,提出基于冠豪猪优化算法、卷积神经网络、双向长短时记忆网络和非参数核密度估计的月径流点预测模型和区... 径流预测对水资源合理配置、制定水力发电计划等非常重要,针对月径流点预测精度不高以及点预测结果难以描述月径流不确定性等问题,提出基于冠豪猪优化算法、卷积神经网络、双向长短时记忆网络和非参数核密度估计的月径流点预测模型和区间预测模型。首先,构建组合卷积神经网络和双向长短时记忆网络的月径流点预测模型,并采用冠豪猪优化算法优化模型的隐藏层单元数等参数,将月径流及影响因素数据输入模型得到月径流的点预测结果。然后采用极差分割法将点预测结果排序后划分为低流量段、中流量段和高流量段,再利用冠豪猪优化算法优化窗宽的非参数核密度估计方法估计3个流量段预测值误差的概率分布,并采用三次样条插值法进行曲线拟合,得到3个流量段的分位点。最后叠加点预测结果和点预测结果所属流量段的分位点得到月径流区间预测结果。通过实例分析,与其他模型相比,提出的CPO-CNN-BiLSTM点预测模型预测精度更高,能较好地追踪月径流的变化趋势,提出的CPO-CNN-BiLSTM-NKDE区间预测模型可有效减少月径流预测的不确定性,能够为决策者提供更多信息。 展开更多
关键词 月径流预测 冠豪猪优化算法 卷积神经网络 双向长短时记忆网络 非参数核密度估计
在线阅读 下载PDF
基于固定窗漂移检测的MSWI过程CO排放建模
7
作者 汤健 张润雨 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第8期930-943,共14页
针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历... 针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历史数据集采用k-means算法获取典型样本池(typical sample pool, TSP),构建基于长短期记忆(long short-term memory, LSTM)神经网络的离线预测模型和基于核主成分分析(kernel principal component analysis, KPCA)的漂移指标计算模型。然后,针对每个在线采集样本,在预设定固定窗口未填满时基于历史LSTM神经网络模型进行在线预测,在预设定固定窗口填满时采用历史KPCA模型进行漂移检测。最后,利用指标霍特林统计量T2和平方预测误差(squared prediction error, SPE)判断是否产生漂移。若未产生漂移,则返回至新窗口期;若产生漂移,则合并历史数据和漂移数据以更新TSP、LSTM模型和KPCA模型。工业现场实际数据的仿真验证了所提方法的合理性和有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 一氧化碳(carbon monoxide CO)排放 概念漂移检测 典型样本池(typical sample pool TSP) 长短期记忆(long short-term memory LSTM)神经网络 核主成分分析(kernel principal component analysis KPCA)
在线阅读 下载PDF
带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为
8
作者 汪璇 史慧霞 《吉林大学学报(理学版)》 北大核心 2025年第5期1276-1292,共17页
当非线性项满足次临界增长条件时,在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R+;H_(0)^(1)(Ω))中讨论带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为.先利用Galerkin逼近法得到解的适定性和正则性,然后借助分解技... 当非线性项满足次临界增长条件时,在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R+;H_(0)^(1)(Ω))中讨论带时间依赖记忆核的非局部非经典扩散方程解的长时间动力学行为.先利用Galerkin逼近法得到解的适定性和正则性,然后借助分解技巧和积分估计法证明时间依赖全局吸引子的存在性和正则性. 展开更多
关键词 非局部非经典扩散方程 时间依赖记忆核 时间依赖全局吸引子 正则性
在线阅读 下载PDF
时间依赖记忆型经典反应扩散方程的拉回吸引子
9
作者 李玉娜 汪璇 《华东师范大学学报(自然科学版)》 北大核心 2025年第1期28-45,共18页
关于具有时间依赖记忆核的经典反应扩散方程,当非线性项满足次临界增长,外力项g(x,t)∈L_(loc)^(2)(R;L^(2)(Ω))时,在时间依赖空间L^(2)(Ω)×L_(μt)^(2)(R_(+);H_(0)^(1)(Ω))中讨论了解的长时间动力学行为.在新的理论框架下,利... 关于具有时间依赖记忆核的经典反应扩散方程,当非线性项满足次临界增长,外力项g(x,t)∈L_(loc)^(2)(R;L^(2)(Ω))时,在时间依赖空间L^(2)(Ω)×L_(μt)^(2)(R_(+);H_(0)^(1)(Ω))中讨论了解的长时间动力学行为.在新的理论框架下,利用积分估计方法以及分解技术证明了解的适定性和正则性,进而证明了时间依赖拉回吸引子的存在性. 展开更多
关键词 经典反应扩散方程 时间依赖记忆核 适定性 时间依赖拉回吸引子 存在性
在线阅读 下载PDF
顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型构建及应用
10
作者 张超越 魏冠军 《铁道科学与工程学报》 北大核心 2025年第8期3352-3363,共12页
提高季节性冻土区高铁路基冻深预测精度,对保证寒区高速铁路的安全调度和平稳运行具有重要意义。针对现有季冻区高铁路基冻深预测模型缺乏利用多元环境序列信息的问题,提出一种顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型,... 提高季节性冻土区高铁路基冻深预测精度,对保证寒区高速铁路的安全调度和平稳运行具有重要意义。针对现有季冻区高铁路基冻深预测模型缺乏利用多元环境序列信息的问题,提出一种顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型,以兰新高铁山丹马场−民乐路段DK371+900、DK383+345和DK391+9403处断面为例,对2015-2017年冻深快速增长期的路基冻深进行预测。该模型首先利用EMD算法对导热系数与冻土环境变量时序数据进行信号分解,得到一系列具有不同特征尺度的数据序列,体现出原数据的趋势与波动性,增加数据的细节和多样性;再利用KPCA算法提取出影响路基冻深的关键因子,实现数据降维,消除因EMD产生的数据冗余;最后通过LSTM网络实现基于多变量的路基冻深预测。研究结果表明:该模型较传统路基冻深预测模型、EMD-LSTM模型、多变量BP神经网络模型、多变量LSTM模型有更高的精确度。模型在3处断面路基冻深预测的平均绝对误差(f_(mae))为0.029、0.033和0.060 m;均方根误差(f_(rmse))为0.036、0.042和0.075 m;拟合优度(R2)为0.924、0.949和0.906。其f_(mae)与f_(rmse)相比于传统路基冻深预测模型最高降低了89.1%和86.8%;相比于EMD-LSTM模型最高降低了87.7%和85.7%;相比于多变量BP神经网络模型最高降低了66.3%和64.7%;相比于多变量LSTM模型最高降低了60.2%和56.7%。研究结果可为季节性冻土区高铁路基冻深预测提供一种新的参考。 展开更多
关键词 高铁路基 经验模态分解 核主成分分析 长短期记忆神经网络 冻结深度预测
在线阅读 下载PDF
基于EWBiLSTM-ATT的数据手套手语识别
11
作者 武东辉 王金凤 +1 位作者 仇森 刘国志 《计算机工程》 北大核心 2025年第8期107-119,共13页
手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——E... 手语识别近年来受到广泛关注,但现有手语识别模型存在训练时间长和计算成本高的问题。为此,基于穿戴式数据手套提出一种融合注意力机制的首层宽卷积核扩展深度卷积神经网络(EWDCNN)和双向长短期记忆网络(BiLSTM)的混合深度学习方法——EWBiLSTM-ATT模型。首先通过加宽首层卷积层来减少模型参数量,提升计算速度,通过扩展WDCNN卷积层深度来提高模型自动提取手语特征的能力;其次引入BiLSTM作为时间建模器捕捉手语序列数据的时间动态信息,有效处理传感器数据中的时序关系;最后利用注意力机制通过映射加权和学习参数矩阵赋予BiLSTM隐含状态不同权重,通过计算每个时间段的注意力权重,模型自动选择与手势动作相关的关键时间段。以STM32F103为主控模块,以MPU6050与Flex Sensor 4.5传感器为核心搭建数据手套手语采集平台。选取16种动态手语动作用于构建GR-Dataset数据训练模型。同一实验条件下,EWBiLSTM-ATT准确率为99.40%,相对于CLT-net、CNN-GRU、CLA-net、CNN-GRU-ATT模型分别提升10.36、8.41、3.87、3.05百分点,训练总时间分别缩减至这4种对比模型的57%、61%、55%、56%。 展开更多
关键词 扩展深度卷积神经网络 双向长短期记忆网络 注意力模块 手语识别 数据手套 深度学习
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
12
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于数字孪生与多模型融合的多元负荷短期预测 被引量:2
13
作者 冯佳威 王海鑫 +3 位作者 杨子豪 陈哲 李云路 杨俊友 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期97-106,共10页
针对多元负荷呈波动性和非线性特性导致预测模型稳定性差和精确度低等问题,提出一种基于数字孪生与多模型融合的多元负荷短期预测方法。首先,根据数字孪生体中气象和负荷信息,利用最大信息系数(MIC)分析多源数据信息间的耦合特性,基于... 针对多元负荷呈波动性和非线性特性导致预测模型稳定性差和精确度低等问题,提出一种基于数字孪生与多模型融合的多元负荷短期预测方法。首先,根据数字孪生体中气象和负荷信息,利用最大信息系数(MIC)分析多源数据信息间的耦合特性,基于数据时序性和周期性构建筛选信息特征。其次,采用自适应局部迭代滤波(ALIF)将历史多元负荷数据进行分解,得到不同频率下固有模态函数(IMF)分量。然后,采用核极限学习机(KELM)和双向长短期记忆网络(BiLSTM)预测高频和低频负荷分量,融合重构得到初始负荷短期预测结果。最后,利用数字孪生体补偿初始预测结果,得到最终负荷预测结果。仿真结果表明,与单预测模型及未基于数字孪生预测模型相比,所提方法具有更好的稳定性,能有效应对负荷波动变化和非线性,提升模型预测精度。 展开更多
关键词 数字孪生 负荷预测 自适应滤波 新型电力系统 核极限学习机 双向长短期记忆网络
在线阅读 下载PDF
面向现代GPU的Winograd卷积加速研究 被引量:4
14
作者 童敢 黄立波 吕雅帅 《电子学报》 EI CAS CSCD 北大核心 2024年第1期244-257,共14页
卷积运算是现代卷积神经网络中必不可少的组成部分,同时也是最耗时的.为了解决卷积算子的性能问题,包括快速傅里叶变换(Fast Fourier Transform,FFT)和Winograd在内的快速卷积算法被提出. Winograd卷积可被用于提高小卷积核的推理性能,... 卷积运算是现代卷积神经网络中必不可少的组成部分,同时也是最耗时的.为了解决卷积算子的性能问题,包括快速傅里叶变换(Fast Fourier Transform,FFT)和Winograd在内的快速卷积算法被提出. Winograd卷积可被用于提高小卷积核的推理性能,是目前卷积神经网络中的主流实现方法 .然而,Winograd卷积在许多高度优化的深度神经网络库和深度学习编译器中的实现比较低效.由于Winograd卷积的四个阶段的复杂数据依赖关系,面向GPU对其进行优化非常具有挑战性.本文针对现代GPU体系结构优化了Winograd卷积算子的性能.本文提出了Winograd计算阶段的等价变化及其利用Tensor Core进行计算的无同步实现,并进一步提出了利用不同GPU内存层级的部分计算核融合方法 PKF(Partial Kernel Fusion).基于张量虚拟机(Tensor Virtual Machine,TVM)和代码重构器PKF-Reconstructor(Partial Kernel Fusion Reconstructor),实现了高性能的Winograd卷积.对真实应用中卷积神经网络的卷积算子的评估表明,与cuDNN相比,本文所提算法实现了7.58~13.69倍的性能提升. 展开更多
关键词 Winograd卷积 低精度 部分计算核融合 卷积加速 GPU内存层级 Tensor Core
在线阅读 下载PDF
基于数据驱动的离心泵轴承特征分析及寿命预测 被引量:4
15
作者 苏皓南 黄倩 +2 位作者 胡波 付强 朱荣生 《机电工程》 CAS 北大核心 2024年第6期941-955,共15页
离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得... 离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得的离心泵轴承正常及故障状态下的数据,分析了时域、频域、时频域各特征在不同工况中的表现差异,发现了时域特征、频域特征、小波包分解能量特征、完全自适应噪声完备集合经验模态分解(CEEMDAN)能量特征可以捕捉到不同工况下的故障信息;然后,以单调性、趋势性指标加权分数为依据,结合特征的敏感性分析结果,优选出了轴承在全寿命周期中表现突出的12个特征,经核主成分分析(KPCA)-长短期记忆网络(LSTM)降维处理后,构建出了能够表征离心泵轴承退化过程的一维特征量;最后,对比分析了LSTM网络、反向传播(BP)网络和卷积神经(CNN)网络的预测效果。研究结果表明:LSTM网络的均方根误差(RMSE)为0.402,平均绝对百分比误差(MAPE)为0.332,预测精度在三者中最好,模型平均训练时间为12.6 s,可见LSTM网络在预测精度及模型训练时间上更具优势。 展开更多
关键词 叶片式泵 滚动轴承 完全自适应噪声完备集合经验模态分解 核主成分分析 长短期记忆网络 轴承退化过程
在线阅读 下载PDF
APK-CNN和Transformer增强的多域虚假新闻检测模型 被引量:3
16
作者 李金金 桑国明 张益嘉 《计算机应用》 CSCD 北大核心 2024年第9期2674-2682,共9页
为解决社交媒体新闻中的领域转移、领域标签不完整问题,以及探索更高效的多域新闻文本特征提取和融合网络,提出一种基于APK-CNN(Adaptive Pooling Kernel Convolutional Neural Network)和Transformer增强的多域虚假新闻检测模型Transm... 为解决社交媒体新闻中的领域转移、领域标签不完整问题,以及探索更高效的多域新闻文本特征提取和融合网络,提出一种基于APK-CNN(Adaptive Pooling Kernel Convolutional Neural Network)和Transformer增强的多域虚假新闻检测模型Transm3。首先,设计三通道网络对文本的语义、情感和风格信息进行特征提取和表示,并利用多粒度跨域交互器对这些特征进行视图组合;其次,通过优化的软共享内存网络和域适配器来完善新闻领域标签;再次,将Transformer与多粒度跨域交互器结合,使用更先进的融合网络动态加权聚合不同领域的交互特征;最后,将融合特征输入分类器中用于真/假新闻判别。实验结果表明,Transm3与M3FEND(Memory-guided Multi-view Multi-domain FakE News Detection)和EANN(Event Adversarial Neural Networks for multi-modal fake news detection)相比,综合F1值在中文数据集上分别提高了3.68%和6.46%,在英文数据集上分别提高了6.75%和11.93%,在各分领域上F1值也有明显的提高,充分验证了Transm3在多域虚假新闻检测工作上的有效性。 展开更多
关键词 虚假新闻检测 领域转移 软共享内存网络 TRANSFORMER APK-CNN
在线阅读 下载PDF
时间特征与空间特征融合的轻量网络故障诊断方法 被引量:2
17
作者 王仲 姜娇 +2 位作者 张磊 谷泉 赵新光 《机电工程》 CAS 北大核心 2024年第9期1565-1574,共10页
为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承... 为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承声阵列信号的空间特征(SFs),使用长短时记忆网络(LSTM)提取了声阵列信号中的时域特征(TFs),并对提取的SFs和TFs进行了特征融合,生成了新的特征矩阵;然后,为了消除融合特征带来的重叠特征和信息冗余问题,引入了基于核的主成分分析(KPCA)方法对新生成的特征矩阵进行了非线性降维,去除了特征中的冗余成分,构建了滚动轴承新的时空特征数据集;最后,采用AdaBoost算法对新生成的数据集进行了故障分类,并得到了滚动轴承的最终故障诊断结果。研究结果表明:在半消声室滚动轴承故障实验台测试中,SF-TFNet方法的故障分类精度可以达到99.75%,其分类精度较高、聚类效果明显。在强背景噪声环境下与ResNet、ICNN和AlexNet三种方法进行比较,SF-TFNet方法不仅收敛速度快,而且故障识别精度高,诊断精度最高可达99.25%。为基于多通道的滚动轴承声辐射信号故障诊断提供了理论依据。 展开更多
关键词 滚动轴承 声辐射信号 多信息融合 特征轻量融合 故障诊断 长短时记忆网络 时域特征 基于核的主成分分析
在线阅读 下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测 被引量:3
18
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备集经验模态分解(ICEEMDAN) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(KELM)
在线阅读 下载PDF
基于优化变分模态分解的光伏功率超短期区间预测方法 被引量:5
19
作者 李芬 于淏 +3 位作者 孙改平 屈爱芳 刘蓉晖 赵晋斌 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期367-376,共10页
针对城市分布式光伏电站在进行超短期功率预测时所需气象资料难以获取,在转折天气下光伏出力不确定性增加的问题,提出一种光伏功率超短期区间预测模型。首先该模型采用麻雀算法优化变分模态分解(VMD),在不同天气下将历史光伏出力分解成... 针对城市分布式光伏电站在进行超短期功率预测时所需气象资料难以获取,在转折天气下光伏出力不确定性增加的问题,提出一种光伏功率超短期区间预测模型。首先该模型采用麻雀算法优化变分模态分解(VMD),在不同天气下将历史光伏出力分解成多个时序特征强的子模态;其次,通过长短期记忆神经网络LSTM对各子模态分别预测;再次,将各子模态的点预测结果叠加;算例验证结果表明:在各类天气条件下,所提模型相比于单纯使用气象因子的预测方法,具有更高的预测准确度和更强的适应性,同时也能在点预测的基础上提供较为准确的置信区间。 展开更多
关键词 光伏发电 模态分解 神经网络 长短期记忆 核密度估计 区间预测
在线阅读 下载PDF
具有时间依赖记忆核的非经典扩散方程的吸引子 被引量:1
20
作者 汪璇 袁海燕 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期429-452,共24页
该文在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R^(+);H_(0)^(1)(Ω))中研究了具有时间依赖记忆核的非经典扩散方程解的长时间动力学行为.在新的理论框架下,利用积分估计方法以及分解技术得到了解的适定性,进而证明了时间依赖全局... 该文在时间依赖空间H_(0)^(1)(Ω)×L_(μt)^(2)(R^(+);H_(0)^(1)(Ω))中研究了具有时间依赖记忆核的非经典扩散方程解的长时间动力学行为.在新的理论框架下,利用积分估计方法以及分解技术得到了解的适定性,进而证明了时间依赖全局吸引子的存在性与正则性. 展开更多
关键词 非经典扩散方程 时间依赖记忆核 适定性 时间依赖全局吸引子 吸引子的正则性
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部