Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precis...Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.展开更多
Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmissio...Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.展开更多
In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y ...In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.展开更多
基金Supported in part by National Basic Research Program of P. R. China(2005CB321604) in part by National Natural Science Foundation of P. R. China (90207002)
文摘Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.
文摘Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.
基金supported by the China Doctoral Discipline New Teacher Foundation(200802901507)the Sichuan Province Basic Research Plan Project(2013JY0165)the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(KYTD201301)
文摘In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.