We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
A complex system contains generally many elements that are networked by their couplings.The time series of output records of the system's dynamical process is subsequently a cooperative result of the couplings.Dis...A complex system contains generally many elements that are networked by their couplings.The time series of output records of the system's dynamical process is subsequently a cooperative result of the couplings.Discovering the coupling structure stored in the time series is an essential task in time series analysis.However,in the currently used methods for time series analysis the structural information is merged completely by the procedure of statistical average.We propose a concept called mode network to preserve the structural information.Firstly,a time series is decomposed into intrinsic mode functions and residue by means of the empirical mode decomposition solution.The mode functions are employed to represent the contributions from different elements of the system.Each mode function is regarded as a mono-variate time series.All the mode functions form a multivariate time series.Secondly,the co-occurrences between all the mode functions are then used to construct a threshold network(mode network)to display the coupling structure.This method is illustrated by investigating gait time series.It is found that a walk trial can be separated into three stages.In the beginning stage,the residue component dominates the series,which is replaced by the mode function numbered M14 with peaks covering^680 strides(~12 min)in the second stage.In the final stage more and more mode functions join into the backbone.The changes of coupling structure are mainly induced by the co-occurrent strengths of the mode functions numbered as M11,M12,M13,and M14,with peaks covering 200-700 strides.Hence,the mode network can display the rich and dynamical patterns of the coupling structure.This approach can be extended to investigate other complex systems such as the oil price and the stock market price series.展开更多
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
基金the National Natural Science Foundation of China(Grant Nos.11805128,11875042,11505114,and 10975099)the Program for Professor of Special Appointment(Orientational Scholar)at Shanghai Institutions of Higher Learning,China(Grant Nos.D-USST02 and QD2015016)the Shanghai Project for Construction of Top Disciplines,China(Grant No.USST-SYS-01).
文摘A complex system contains generally many elements that are networked by their couplings.The time series of output records of the system's dynamical process is subsequently a cooperative result of the couplings.Discovering the coupling structure stored in the time series is an essential task in time series analysis.However,in the currently used methods for time series analysis the structural information is merged completely by the procedure of statistical average.We propose a concept called mode network to preserve the structural information.Firstly,a time series is decomposed into intrinsic mode functions and residue by means of the empirical mode decomposition solution.The mode functions are employed to represent the contributions from different elements of the system.Each mode function is regarded as a mono-variate time series.All the mode functions form a multivariate time series.Secondly,the co-occurrences between all the mode functions are then used to construct a threshold network(mode network)to display the coupling structure.This method is illustrated by investigating gait time series.It is found that a walk trial can be separated into three stages.In the beginning stage,the residue component dominates the series,which is replaced by the mode function numbered M14 with peaks covering^680 strides(~12 min)in the second stage.In the final stage more and more mode functions join into the backbone.The changes of coupling structure are mainly induced by the co-occurrent strengths of the mode functions numbered as M11,M12,M13,and M14,with peaks covering 200-700 strides.Hence,the mode network can display the rich and dynamical patterns of the coupling structure.This approach can be extended to investigate other complex systems such as the oil price and the stock market price series.