As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardne...As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.展开更多
For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve...For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.展开更多
The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal fr...The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.展开更多
The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA position...The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.展开更多
To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time di...To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.展开更多
针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference ...针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference of arrival)无线电技术的多源融合方案的基础上,构建无人飞行器探测技术评价指标体系,并建立了一种基于决策试验评估实验室(decision-making trial and evaluation laboratory, DEMATEL)和优劣解距离法(technique for order preference by similarity to an ideal solution, TOPSIS)的多属性评价方法。结果发现,以TDOA为基础的多源融合方案是构建城市低空安防体系的有效路径和普适性方案。研究表明,低空安防体系的建设是一个系统性工程,需要政府、企业和社会各方的共同努力,在技术、数据、运营等多个层面进行整合,以适应未来低空经济的发展需求。展开更多
基金supported by the National Natural Science Foundation of China(61472443)the Basic Research Priorities Program of Shaanxi Province Natural Science Foundation of China(2013JQ8042)
文摘As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.
基金supported by the National Natural Science Foundationof China(61201208)
文摘For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.
基金supported by the Fundamental Research Funds for the Central Universities(2082604194194)
文摘The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61502522)Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金Equipment Pre-Research Ministry of Education Joint Fund (6141A02033703)Hubei Provincial Natural Scie nce Foundation (2019CFC897)。
文摘The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.
基金This work was supported by the National Natural Science Foundation of China(61502522)the Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金the Equipment Pre-Research Ministry of Education Joint Fund(6141A02033703)the Hubei Provincial Natural Science Foundation(2019CFC897).
文摘To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.
文摘针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference of arrival)无线电技术的多源融合方案的基础上,构建无人飞行器探测技术评价指标体系,并建立了一种基于决策试验评估实验室(decision-making trial and evaluation laboratory, DEMATEL)和优劣解距离法(technique for order preference by similarity to an ideal solution, TOPSIS)的多属性评价方法。结果发现,以TDOA为基础的多源融合方案是构建城市低空安防体系的有效路径和普适性方案。研究表明,低空安防体系的建设是一个系统性工程,需要政府、企业和社会各方的共同努力,在技术、数据、运营等多个层面进行整合,以适应未来低空经济的发展需求。