The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formul...The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.展开更多
The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of...The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.展开更多
为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传...为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传输过程深刻影响着其动态过程。然而现有管道传输过程时域仿真算法存在着精度与效率的两难。为解决上述问题,提出一种基于时域二端口模型的综合能源系统气网动态仿真算法。首先基于特征线法,构建气网源荷节点关系矩阵,进一步给出时域二端口模型;随后参考特征线法数值格式,构建状态量空间分布矩阵,用于获取气网状态量分布,并提出基于时域二端口模型和分布矩阵的气网动态仿真算法。算例结果表明,所提出的方法具有高效率和高精度两大优势,适合于气-电耦合的综合能源系统的较长时间仿真。展开更多
文摘The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.
基金the High Technology Research and Development (863) Program (2003AA517020).
文摘The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.
文摘为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传输过程深刻影响着其动态过程。然而现有管道传输过程时域仿真算法存在着精度与效率的两难。为解决上述问题,提出一种基于时域二端口模型的综合能源系统气网动态仿真算法。首先基于特征线法,构建气网源荷节点关系矩阵,进一步给出时域二端口模型;随后参考特征线法数值格式,构建状态量空间分布矩阵,用于获取气网状态量分布,并提出基于时域二端口模型和分布矩阵的气网动态仿真算法。算例结果表明,所提出的方法具有高效率和高精度两大优势,适合于气-电耦合的综合能源系统的较长时间仿真。