This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of th...This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.展开更多
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platfo...The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.展开更多
In order to improve the safety properties of an offloading system with side-by-side (SBS) mooring in which the FPSO is moored by a yoke system in the field of BZ25-1, it is necessary to analyze those properties. Acc...In order to improve the safety properties of an offloading system with side-by-side (SBS) mooring in which the FPSO is moored by a yoke system in the field of BZ25-1, it is necessary to analyze those properties. According to the experience of similar projects, tow strategies of different offioading arrangements were discussed by using the 3-D radiation/diffraction theory and quasi-static time domain method to assess their respective safety properties. Through the safety assessment analysis of different arrangement comparisons, various ways to improve the safety properties of off'loading systems with side-by-side mooring were verified by analyzing the tension in the mooring lines and the fender deflection. Through comparison it can be concluded that by enlarging the key factors properly, including the size of the fenders and the hawsers as well as the number of hawsers, a better safety performance can be achieved.展开更多
The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester ro...The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester rope has attracted much attention among numerous synthetic fiber rope materials due to its lightweight,low price,corrosion resistance,and high strength.Thus,the mooring characteristics of it are worth studying.Polyester mooring lines are flexible in deep water,when a marine structure is moored by them,the geometric nonlinearity such as large displacement,large stretch,and large bending deformation,and the material nonlinearity like viscoelastic of the polyester ropes become complex integrated problems to be studied.Considering the nonlinear phenomenon,the simulation and calculation of a polyester line were carried out by the absolute nodal coordinate formulation(ANCF)in this paper since the ANCF method has advantages in dealing with the significant deformation problems of the flexible structures.In addition,a chain mooring line was also simulated for comparison,and the results show that the polyester ropes reduce the self-weight of the mooring lines and provide sufficient mooring strength at the same time,and the nonlinear phenomenon of the polyester ropes is different from that of the chain mooring lines.展开更多
The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual ...The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provi...This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.展开更多
Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design o...To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.展开更多
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater...Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.展开更多
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compa...At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.展开更多
This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit ...This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit was built, the 3-D diffraction-radiation theory was used to obtain the hydrodynamic loads on the wet surfaces and the response amplitude operators (RAO) of the unit. According to the environmental data, the short-term motion response to motion performance of the unit is predicted by the spectral method. Then a time-domain calculation was done to analyze the motion of the unit with its mooring system. The research results can be a reference for the model test of unit.展开更多
In this paper we investigated the effect of the first order responses of mooring line on the second order mooring line damping.In the study of the slow oscillating of a moored floating structure by perturbation method...In this paper we investigated the effect of the first order responses of mooring line on the second order mooring line damping.In the study of the slow oscillating of a moored floating structure by perturbation method in frequency domain,the second order equations of the mooring line are divided into non homogeneous and homogeneous equations.The solutions are related to the first order responses of mooring line and second order floating structure oscillation respectively.In order to find the effect of the first order responses of mooring line,the second order mooring line tension and damping were determined by solving the non homogeneous equation and homogeneous equation.From the results,we found,although the second order mooring line tension obtained from the non homogenous equation is quite small compared with the total second order mooring line tension,the damping contributed from both of them are in the same order in quantity.So,in predicting the second order mooring line damping,the effect of the solution related to the non homogeneous equation can not be omitted.展开更多
The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper...The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper aims to develop an inte-grated design process for riser systems with a lazy-S confguration and mooring systems in the ofshore catenary anchor leg mooring(CALM)oil terminal.One of the important criteria considered in this integrated design is the ofset diagram and safe operation zone(SAFOP)related to the mooring system and the riser,respectively.These two diagrams are obtained separately by diferent analyses;therefore,codes or standards are available separately for two components.In this methodol-ogy,the diagrams of both risers and mooring lines are incorporated into a single spiral,thus identifying the safe and failure zones of risers and the mooring lines of the oil terminal.This,in turn,leads to substantial benefts in terms of overall system response,cost reduction,and safety to the ofshore oil terminal.To implement this process,three diferent riser lengths with the lazy-S confguration are considered at three diferent sea depths at the terminal installation site.For each condition,the integrated design of the mooring system and riser is executed according to the derived procedure.Then,coupled dynamic models,wherein both buoys and hoses are included,are developed using OrcaFlex.Results show that the criteria of the relevant regulations are not satisfed by reducing the length of the riser relative to the designed size.Further,as water depth increases,this type of riser confguration shows good coupled performance while interacting with the mooring system.In the cross ofset mode,the maximum margin is created between the ofset diagram and the SAFOP diagram,while the most critical dynamic response of the tanker and terminal system occurs in the near and far modes.Therefore,with this method,the best position for the riser direction with the tanker direction is 90°in the best case.展开更多
As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal cu...As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.展开更多
The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculati...The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.展开更多
Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentri...Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.展开更多
文摘This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.
基金Foundation item: Supported by the 111 Project under Grant No.B07019, and the National Natural Science Foundation of China under Grant No.50979020.
文摘The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
基金Supported by the China National 111 project under Grant No.B07019Important National Science & Technology Specific Projects under Grant No.2008ZX05-056-03
文摘In order to improve the safety properties of an offloading system with side-by-side (SBS) mooring in which the FPSO is moored by a yoke system in the field of BZ25-1, it is necessary to analyze those properties. According to the experience of similar projects, tow strategies of different offioading arrangements were discussed by using the 3-D radiation/diffraction theory and quasi-static time domain method to assess their respective safety properties. Through the safety assessment analysis of different arrangement comparisons, various ways to improve the safety properties of off'loading systems with side-by-side mooring were verified by analyzing the tension in the mooring lines and the fender deflection. Through comparison it can be concluded that by enlarging the key factors properly, including the size of the fenders and the hawsers as well as the number of hawsers, a better safety performance can be achieved.
基金Supported by the Specialized Research Project for LS17-2 Semi-submersible Production Platform(LSZX-2020-HN-05-0405).
文摘The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester rope has attracted much attention among numerous synthetic fiber rope materials due to its lightweight,low price,corrosion resistance,and high strength.Thus,the mooring characteristics of it are worth studying.Polyester mooring lines are flexible in deep water,when a marine structure is moored by them,the geometric nonlinearity such as large displacement,large stretch,and large bending deformation,and the material nonlinearity like viscoelastic of the polyester ropes become complex integrated problems to be studied.Considering the nonlinear phenomenon,the simulation and calculation of a polyester line were carried out by the absolute nodal coordinate formulation(ANCF)in this paper since the ANCF method has advantages in dealing with the significant deformation problems of the flexible structures.In addition,a chain mooring line was also simulated for comparison,and the results show that the polyester ropes reduce the self-weight of the mooring lines and provide sufficient mooring strength at the same time,and the nonlinear phenomenon of the polyester ropes is different from that of the chain mooring lines.
文摘The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
基金Funded by the UK Engineering and Physical Sciences Research Council under the grant EP/E040136/1
文摘This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
基金Supported by the NSFC under Grant No. 50679051 and NO.50639030.
文摘To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.
文摘Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
基金Supported by the National Natural Science Foundation of China (Grant No. 10602055)Natural Science Foundation of Zhejiang Province (Grant No. Y6110243)
文摘At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.
基金Supported by the National High Technology Research and Development Program of China under Grant No.2006AA09A104
文摘This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit was built, the 3-D diffraction-radiation theory was used to obtain the hydrodynamic loads on the wet surfaces and the response amplitude operators (RAO) of the unit. According to the environmental data, the short-term motion response to motion performance of the unit is predicted by the spectral method. Then a time-domain calculation was done to analyze the motion of the unit with its mooring system. The research results can be a reference for the model test of unit.
文摘In this paper we investigated the effect of the first order responses of mooring line on the second order mooring line damping.In the study of the slow oscillating of a moored floating structure by perturbation method in frequency domain,the second order equations of the mooring line are divided into non homogeneous and homogeneous equations.The solutions are related to the first order responses of mooring line and second order floating structure oscillation respectively.In order to find the effect of the first order responses of mooring line,the second order mooring line tension and damping were determined by solving the non homogeneous equation and homogeneous equation.From the results,we found,although the second order mooring line tension obtained from the non homogenous equation is quite small compared with the total second order mooring line tension,the damping contributed from both of them are in the same order in quantity.So,in predicting the second order mooring line damping,the effect of the solution related to the non homogeneous equation can not be omitted.
文摘The mooring and riser system is the most critical part of an ofshore oil terminal.Traditionally,these two parts are designed separately without considering the nonlinear interaction between them.Thus,the present paper aims to develop an inte-grated design process for riser systems with a lazy-S confguration and mooring systems in the ofshore catenary anchor leg mooring(CALM)oil terminal.One of the important criteria considered in this integrated design is the ofset diagram and safe operation zone(SAFOP)related to the mooring system and the riser,respectively.These two diagrams are obtained separately by diferent analyses;therefore,codes or standards are available separately for two components.In this methodol-ogy,the diagrams of both risers and mooring lines are incorporated into a single spiral,thus identifying the safe and failure zones of risers and the mooring lines of the oil terminal.This,in turn,leads to substantial benefts in terms of overall system response,cost reduction,and safety to the ofshore oil terminal.To implement this process,three diferent riser lengths with the lazy-S confguration are considered at three diferent sea depths at the terminal installation site.For each condition,the integrated design of the mooring system and riser is executed according to the derived procedure.Then,coupled dynamic models,wherein both buoys and hoses are included,are developed using OrcaFlex.Results show that the criteria of the relevant regulations are not satisfed by reducing the length of the riser relative to the designed size.Further,as water depth increases,this type of riser confguration shows good coupled performance while interacting with the mooring system.In the cross ofset mode,the maximum margin is created between the ofset diagram and the SAFOP diagram,while the most critical dynamic response of the tanker and terminal system occurs in the near and far modes.Therefore,with this method,the best position for the riser direction with the tanker direction is 90°in the best case.
基金Supported by the National "863" Program (Grant No.2007AA05Z450)the National S&T Program (Grant No.2008BAA15B04)+2 种基金2010 Ocean Special Funds (Grant No. ZJME2010GC01, No. ZJME2010CY01)Fundamental Research Funds for the Central Universities (GK2010260106)"111 Project" Foundation (Grant No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.
基金financial support for the PhD study from GL-Nobel Denton based in London
文摘The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.
基金supported by the Project of China Offshore Oil Engineering Company(Tianjin)CCL2014CFD。
文摘Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.