This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i...The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm.展开更多
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch...A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
Artificial neural network has been used successfully to develope the automatic spike extraction. In order to address some of the problems before the wireless transmission of the implantable chip, the automatic spike s...Artificial neural network has been used successfully to develope the automatic spike extraction. In order to address some of the problems before the wireless transmission of the implantable chip, the automatic spike sorting method with low complexity and high efficiency is proposed based on the hybrid neural network with the principal component analysis network (PCAN) and normal boundary response (NBR) self-organizing mapping (SOM) net- work classifier. An automatic PCAN technique is used to reduce the dimension and eliminate the correlation of the spike signal. The NBR-SOM network performs the spike sorting challenge and improves the classification performance. The experimental results show that based on the hybrid neural network, the spike sorting method achieves the accuracy above 97.91% with signals contain- ing five classes. The proposed NBR-SOM network classifier is to further improve the stability and effectiveness of the classification system.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金supported by the National Natural Science Foundation of China(61172116)
文摘The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm.
基金supported by the National Natural Science Foundation of China (60872108)the Postdoctoral Science Foundation of China(200902411+3 种基金20080430903)Heilongjiang Postdoctoral Financial Assistance (LBH-Z08129)the Scientific and Technological Creative Talents Special Research Foundation of Harbin Municipality (2008RFQXG030)Central University Basic Research Professional Expenses Special Fund Project
文摘A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
基金supported by the National Natural Science Foundation of China(60971084,61272049)the Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (20091102120046)
文摘Artificial neural network has been used successfully to develope the automatic spike extraction. In order to address some of the problems before the wireless transmission of the implantable chip, the automatic spike sorting method with low complexity and high efficiency is proposed based on the hybrid neural network with the principal component analysis network (PCAN) and normal boundary response (NBR) self-organizing mapping (SOM) net- work classifier. An automatic PCAN technique is used to reduce the dimension and eliminate the correlation of the spike signal. The NBR-SOM network performs the spike sorting challenge and improves the classification performance. The experimental results show that based on the hybrid neural network, the spike sorting method achieves the accuracy above 97.91% with signals contain- ing five classes. The proposed NBR-SOM network classifier is to further improve the stability and effectiveness of the classification system.