期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges 被引量:33
1
作者 戴公连 闫斌 《Journal of Central South University》 SCIE EI CAS 2012年第8期2348-2353,共6页
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini... A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment. 展开更多
关键词 high-speed railway continuously welded track cable-stayed bridge simply-supported beam
在线阅读 下载PDF
Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge 被引量:11
2
作者 张明金 李永乐 汪斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1264-1272,共9页
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament... In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind. 展开更多
关键词 wind-vehicle-bridge system coupled vibration long-span cable-stayed bridge fundamental factors
在线阅读 下载PDF
Dynamic effect of heavy-haul train on seismic response of railway cable-stayed bridge 被引量:7
3
作者 ZHU Zhi-hui GONG Wei +3 位作者 WANG Kun LIU Yu DAVIDSON Michael T JIANG Li-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1939-1955,共17页
This paper focuses on understanding and evaluating the dynamic effect of the heavy-haul train system on the seismic performance of a long-span railway bridge. A systematic study on the effect of heavy-haul trains on b... This paper focuses on understanding and evaluating the dynamic effect of the heavy-haul train system on the seismic performance of a long-span railway bridge. A systematic study on the effect of heavy-haul trains on bridge seismic response has been conducted, considering the influence of vehicle modeling strategies and dynamic characteristics of the seismic waves. For this purpose, the performance of a long-span cable-stayed railway bridge is assessed with stationary trains atop it, where the heavy-haul vehicles are modeled in two different ways: the multi-rigid body model with suspension system and additional mass model. Comparison of the bridge response in the presence or absence of the train system has been conducted, and the vehicle loading situation, which includes full-load and no-load, is also discussed. The result shows that during the earthquake, the peak moment of the main girder and peak stress of stay cables increase by 80% and by 40% in the presence of fully loaded heavy-haul trains, respectively. At the same time, a considerable decrease appears in the peak acceleration of the main girder. This proves the existence of the damping effect of the heavy-haul train system, and this effect is more obvious for the fully loaded vehicles. Finally, this paper proposes an efficient vehicle modeling method with 2 degrees of freedom(DOF) for simplifying the treatment of the train system in bridge seismic checking. 展开更多
关键词 train-bridge interaction heavy-haul train cable-stayed bridge EARTHQUAKE live load
在线阅读 下载PDF
Numerical calculation on solar temperature field of a cable-stayed bridge with U-shaped section on high-speed railway 被引量:3
4
作者 刘文硕 戴公连 饶少臣 《Journal of Central South University》 SCIE EI CAS 2014年第8期3345-3352,共8页
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was... Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter. 展开更多
关键词 high-speed railway cable-stayed bridge U-shaped section solar temperature field thermal analysis
在线阅读 下载PDF
Dynamic analysis and modal test of long-span cable-stayed bridge based on ambient excitation 被引量:3
5
作者 陈常松 颜东煌 《Journal of Central South University of Technology》 EI 2007年第1期135-139,共5页
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird... To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test. 展开更多
关键词 bridge engineering cable-stayed bridge dynamic finite element method ambient excitation modal test
在线阅读 下载PDF
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
6
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
在线阅读 下载PDF
Spatial gust impact analysis on safety and comfort of a train crossing cable-stayed bridge combining statistical method 被引量:2
7
作者 ZHANG Yun-fei LI Li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2605-2620,共16页
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi... In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px)and K_(sx)changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge. 展开更多
关键词 wind-train-bridge dynamic system high-speed train crosswind environment single-tower cable-stayed bridge running safety running stability
在线阅读 下载PDF
Estimating extreme temperature differences in steel box girder using long-term measurement data 被引量:5
8
作者 丁幼亮 王高新 《Journal of Central South University》 SCIE EI CAS 2013年第9期2537-2545,共9页
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ... The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate. 展开更多
关键词 structural health monitoring cable-stayed bridge steel box girder temperature difference extreme value analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部