In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat...The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(...2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6...Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.展开更多
This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of ...This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.展开更多
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the...To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.展开更多
In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile traj...In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.展开更多
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an...Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.展开更多
Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-d...Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as guest molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.展开更多
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi...Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
A new cobalt(Ⅱ)-radical complex:[Co(im4-py)_(2)(PNB)_(2)](im4-py=2-(4'-pyridyl)-4,4,5,5-tetramethylimidazole-1-oxyl,HPNB=p-nitrobenzoic acid)has been synthesized and characterized by X-ray diffraction analysis,el...A new cobalt(Ⅱ)-radical complex:[Co(im4-py)_(2)(PNB)_(2)](im4-py=2-(4'-pyridyl)-4,4,5,5-tetramethylimidazole-1-oxyl,HPNB=p-nitrobenzoic acid)has been synthesized and characterized by X-ray diffraction analysis,elemental analysis,IR,and magnetic properties.X-ray diffraction analysis shows that the complex exists as mononuclear molecules and Co(Ⅱ)ion is four-coordinated with two radicals and two PNB-ligands.The magnetic susceptibility study indicates the complex exhibits weak ferromagnetic interactions between cobalt(Ⅱ)and im4-py radical.The magnetic property is explained by the magnetic and structure exchange mechanism.CCDC:976028.展开更多
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and...The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.展开更多
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv...Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.展开更多
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
基金financially supported by the National Natural Science Foundation of China (Grant No. 22275173)the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Grant No. 22kfhg10)。
文摘The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
文摘2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.
文摘This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.
文摘To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.
文摘In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.
文摘Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.
文摘Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as guest molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
基金National Key Research and Development Program of China(2022YFE0206300)National Natural Science Foundation of China(U21A2081,22075074,22209047)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2024A1515011620)Hunan Provincial Natural Science Foundation of China(2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation(2023YCII0119)。
文摘Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
文摘A new cobalt(Ⅱ)-radical complex:[Co(im4-py)_(2)(PNB)_(2)](im4-py=2-(4'-pyridyl)-4,4,5,5-tetramethylimidazole-1-oxyl,HPNB=p-nitrobenzoic acid)has been synthesized and characterized by X-ray diffraction analysis,elemental analysis,IR,and magnetic properties.X-ray diffraction analysis shows that the complex exists as mononuclear molecules and Co(Ⅱ)ion is four-coordinated with two radicals and two PNB-ligands.The magnetic susceptibility study indicates the complex exhibits weak ferromagnetic interactions between cobalt(Ⅱ)and im4-py radical.The magnetic property is explained by the magnetic and structure exchange mechanism.CCDC:976028.
文摘The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.
文摘Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.