In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s...Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.展开更多
In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of...In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of munitions with an aerial three-dimensional(3D) highly-dynamic topographic structure under a satellite denied environment. As for aerial networked munitions, the measurement of munitions is objectively incomplete due to the degenerated and interrupted link of munitions. For this reason, a cluster-oriented collaborative localization method is put forward in this paper. Multidimensional scaling(MDS) was first integrated with a trilateration localization method(TLM) to construct a relative localization algorithm for determining the relative location of a mobile cluster network. The information related to relative velocity was then combined into a collaborative localization framework to devise a TLM-vMDS algorithm. Finally, an iterative refinement algorithm based on scaling by majorizing a complicated function(SMACOF) was employed to effectively eliminate the influence of incomplete link observation on localization accuracy. Compared with the currently available advanced algorithms, the proposed TLM-vMDS algorithm achieves higher localization accuracy and faster convergence for a cluster of extensively networked munitions, and also offers better numerical stability and robustness for highspeed motion models.展开更多
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p...How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.展开更多
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi...Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.展开更多
Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group stru...Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market.展开更多
This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using t...This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.展开更多
A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of c...A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.展开更多
Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. ...Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. Therefore, it is important to optimize the structure, especially in ambiguous and quick-tempo modern warfare. This paper proposes an adaptive evolvement mechanism for the C^4ISR structure to survive the changeable warfare. Firstly, the information age C^4ISR structure is defined and modeled based on the complex network theory. Secondly, taking the observe, orient, decide and act (OODA) model into consideration, four kinds of loops in the C^4ISR structure are pro- posed and their coefficient of networked effects (CNE) is further defined. Then, the adaptive evolvement mechanisms of the four kinds of loops are presented respectively. Finally, taking the joint air-defense C^4ISR as an example, simulation experiments are im- plemented, which validate the evolvement mechanism and show that the information age C41SR structure has some characteristics of small-world network and scale-free network.展开更多
A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of comm...A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas...The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.展开更多
In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures ...In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm.展开更多
In this paper, adjustment factors J and R put forward by professor Zhou Jiangwen are introduced and the nature of the adjustment factors and their role in evaluating adjustment structure is discussed and proved.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金supported by the National Natural Science Fundation of China(61573285)the Doctoral Fundation of China(2013ZC53037)
文摘Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.
文摘In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of munitions with an aerial three-dimensional(3D) highly-dynamic topographic structure under a satellite denied environment. As for aerial networked munitions, the measurement of munitions is objectively incomplete due to the degenerated and interrupted link of munitions. For this reason, a cluster-oriented collaborative localization method is put forward in this paper. Multidimensional scaling(MDS) was first integrated with a trilateration localization method(TLM) to construct a relative localization algorithm for determining the relative location of a mobile cluster network. The information related to relative velocity was then combined into a collaborative localization framework to devise a TLM-vMDS algorithm. Finally, an iterative refinement algorithm based on scaling by majorizing a complicated function(SMACOF) was employed to effectively eliminate the influence of incomplete link observation on localization accuracy. Compared with the currently available advanced algorithms, the proposed TLM-vMDS algorithm achieves higher localization accuracy and faster convergence for a cluster of extensively networked munitions, and also offers better numerical stability and robustness for highspeed motion models.
基金supported by the National Natural Science Foundation of China(61573285).
文摘How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.
文摘Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.
基金Supported by National Natural Science Foundation of China(72222009,71991472)。
文摘Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market.
文摘This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.
文摘A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.
基金supported by the National Defense Basic Research Program of China and National Defense Pre-Research Foundation of China
文摘Command, control, communication, computing, intel- ligence, surveillance and reconnaissance (C^4ISR) in information age is a complex system whose structure always changes ac- tively or passively during the warfare. Therefore, it is important to optimize the structure, especially in ambiguous and quick-tempo modern warfare. This paper proposes an adaptive evolvement mechanism for the C^4ISR structure to survive the changeable warfare. Firstly, the information age C^4ISR structure is defined and modeled based on the complex network theory. Secondly, taking the observe, orient, decide and act (OODA) model into consideration, four kinds of loops in the C^4ISR structure are pro- posed and their coefficient of networked effects (CNE) is further defined. Then, the adaptive evolvement mechanisms of the four kinds of loops are presented respectively. Finally, taking the joint air-defense C^4ISR as an example, simulation experiments are im- plemented, which validate the evolvement mechanism and show that the information age C41SR structure has some characteristics of small-world network and scale-free network.
基金Project(20141996018)supported by Aerospace Science Foundation of ChinaProject(2012JZ8005)supported by the Natural Science Fundamental Research Planned Project of Shanxi Province,China
文摘A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金supported by the National Natural Science Fundation of China (6097408261075055)the Fundamental Research Funds for the Central Universities (K50510700004)
文摘The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.
基金Project(1365-96/7/22) supported by University of Mohaghegh Ardabili,Iran
文摘In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm.
文摘In this paper, adjustment factors J and R put forward by professor Zhou Jiangwen are introduced and the nature of the adjustment factors and their role in evaluating adjustment structure is discussed and proved.