The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio...The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.展开更多
Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of freq...Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of frequencyphase scanning 3-D radar is presented. The IF signals model of different channels of 3-D radar is presented in one simple formula in which complex waveform effects are considered. The simulation results obtained during tests are also provided in the end.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electr...The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened.展开更多
Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters o...Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,wh...Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,which needs much reinforcement and support prior to mining.Cement-sodium silicate grout technology was selected,then its related parameters such as grout pressure,diffusion radius and time were calculated and proposed.In order to test the effect of the pressured grout in the fractured No.4 ore block,field experiments were conducted.To optimize stoping configuration,three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed.The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously.After grout,ore recovery rate is increased by 10.2%employing the newly designed stoping configuration compared with the previous.Last,analyzed from the surface movements,roof subsidence and the maximum principal stress of the pillars,the mining safety is probable of being ensured.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter m...In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.展开更多
Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the materi...Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.展开更多
To solve the increasingly serious problem of "many wells,but low productivity"in China,the hydraulic jetting fracturing technology with coiled tubing,as a new measure for effectively improving the production...To solve the increasingly serious problem of "many wells,but low productivity"in China,the hydraulic jetting fracturing technology with coiled tubing,as a new measure for effectively improving the production rate of individual well and enhancing oil and gas recovery,merits much attention nowadays.On the basis of study of the hydraulic jetting fracturing mechanism with coiled tubing and numerical simulation of pressure distribution inside the pores,the mechanism of pressure rise inside the pores caused by the pressure boost action within the jetting pore and the hydraulic isolation action is examined,and the influence of main parameters on the pressure distribution inside the pores is analyzed.3 kinds of operating methods of hydraulic jetting fracturing with coiled tubing are raised with the tubular diameter of coiled tubing as an important feature parameter.According to the experimental study,the fracturing mechanism and computational results of numerical simulation are both examined.It is considered that under the same pressure drop of jet nozzle,the pressure inside the pores increases with the confining pressure nearly at a linear state.When the vertical depth of the borehole is rather big and the rupture pressure of the formation is higher,it is recommended to use higher pressure drop of jet nozzle for achieving better pressure boost and hydraulic isolation effect.For the hydraulic jetting fracturing with coiled tubing,the coiled tubing with tubular diameter not less than 50.8 mm(2 in.) is usually used.展开更多
基金Projects(51174236,51134003)supported by the National Natural Science Foundation of ChinaProject(2011CB606306)supported by the National Basic Research Program of ChinaProject(PMM-SKL-4-2012)supported by the Opening Project of State Key Laboratory of Porous Metal Materials(Northwest Institute for Nonferrous Metal Research),China
文摘The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.
文摘Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of frequencyphase scanning 3-D radar is presented. The IF signals model of different channels of 3-D radar is presented in one simple formula in which complex waveform effects are considered. The simulation results obtained during tests are also provided in the end.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
文摘The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened.
基金Project(2016ZX05058-002-006)supported by National Science and Technology Major Projects of ChinaProject(2018CXTD346)supported by Innovative Research Team Program of Natural Science Foundation of Hainan Province,China
文摘Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.
基金Projects(51374034,51674012)supported by the National Natural Science Foundation of ChinaProject(2013BAB02B05)supported by the China National Science and Technology Support Program during the 12th Five-Year Plan Period
文摘Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,which needs much reinforcement and support prior to mining.Cement-sodium silicate grout technology was selected,then its related parameters such as grout pressure,diffusion radius and time were calculated and proposed.In order to test the effect of the pressured grout in the fractured No.4 ore block,field experiments were conducted.To optimize stoping configuration,three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed.The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously.After grout,ore recovery rate is increased by 10.2%employing the newly designed stoping configuration compared with the previous.Last,analyzed from the surface movements,roof subsidence and the maximum principal stress of the pillars,the mining safety is probable of being ensured.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金Project(50679006) supported by the National Natural Science Foundation of ChinaProject(NCET-06-0270) supported by the Program for New Century Excellent Talents in University
文摘In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.
文摘Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.
基金2006 key project of National 863 Program,"Coiled Tubing Technique and Equipment",Item No.2006AA06A106
文摘To solve the increasingly serious problem of "many wells,but low productivity"in China,the hydraulic jetting fracturing technology with coiled tubing,as a new measure for effectively improving the production rate of individual well and enhancing oil and gas recovery,merits much attention nowadays.On the basis of study of the hydraulic jetting fracturing mechanism with coiled tubing and numerical simulation of pressure distribution inside the pores,the mechanism of pressure rise inside the pores caused by the pressure boost action within the jetting pore and the hydraulic isolation action is examined,and the influence of main parameters on the pressure distribution inside the pores is analyzed.3 kinds of operating methods of hydraulic jetting fracturing with coiled tubing are raised with the tubular diameter of coiled tubing as an important feature parameter.According to the experimental study,the fracturing mechanism and computational results of numerical simulation are both examined.It is considered that under the same pressure drop of jet nozzle,the pressure inside the pores increases with the confining pressure nearly at a linear state.When the vertical depth of the borehole is rather big and the rupture pressure of the formation is higher,it is recommended to use higher pressure drop of jet nozzle for achieving better pressure boost and hydraulic isolation effect.For the hydraulic jetting fracturing with coiled tubing,the coiled tubing with tubular diameter not less than 50.8 mm(2 in.) is usually used.