期刊文献+
共找到4,133篇文章
< 1 2 207 >
每页显示 20 50 100
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
1
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
MOVING OBJECT TRACKING IN DYNAMIC IMAGE SEQUENCE BASED ON ESTIMATION OF MOTION VECTORS OF FEATURE POINTS 被引量:2
2
作者 黎宁 周建江 张星星 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期295-300,共6页
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor... An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence. 展开更多
关键词 motion compensation motion estimation feature extraction moving object tracking dynamic image sequence
在线阅读 下载PDF
EFFECTIVE FEATURE ANALYSIS FOR COLOR IMAGE SEGMENTATION 被引量:2
3
作者 黎宁 毛四新 李有福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期206-212,共7页
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen... An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images. 展开更多
关键词 image segmentation color image neural networks fuzzy clustering feature encoding
在线阅读 下载PDF
HIET:Hybrid Information Enhancement Transformer Network for Single-Photon Image Reconstruction
4
作者 Yiming Liu Xuri Yao +2 位作者 Tao Zhang Yifei Sun Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期1-17,共17页
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev... Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information. 展开更多
关键词 single-photon images hybrid information enhancement structual feature enhancement data simulation pipeline
在线阅读 下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
5
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
在线阅读 下载PDF
Image Classification Based on the Fusion of Complementary Features 被引量:3
6
作者 Huilin Gao Wenjie Chen 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期197-205,共9页
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this... Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result. 展开更多
关键词 image classification complementary features bag-of-words (BOW) feature fusion
在线阅读 下载PDF
The motion analysis of fire video images based on moment features and flicker frequency 被引量:9
7
作者 LIJin FONG +3 位作者 N.K.,CHOW W.K.,WONG L.T.,LUPuyi XUDian-guo 《Journal of Marine Science and Application》 2004年第1期81-86,共6页
In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and ... In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection. 展开更多
关键词 fire video images moment features flicker frequency
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
8
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
A Sequence Image Matching Method Based on Improved High-Dimensional Combined Features 被引量:2
9
作者 Leng Xuefei Gong Zhe +1 位作者 Fu Runzhe Liu Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期820-828,共9页
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim... Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes. 展开更多
关键词 SEQUENCE image MATCHING navigation DELAUNAY TRIANGULATION HIGH-DIMENSIONAL combined feature k-nearest NEIGHBOR
在线阅读 下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
10
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared image image FUSION dual BAND pulse coupled NEURAL network(PCNN) feature extraction
在线阅读 下载PDF
A novel approach for feature extraction from a gamma‑ray energy spectrum based on image descriptor transferring for radionuclide identification 被引量:2
11
作者 Hao‑Lin Liu Hai‑Bo Ji +3 位作者 Jiang‑Mei Zhang Cao‑Lin Zhang Jing Lu Xing‑Hua Feng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第12期88-104,共17页
This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contai... This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contained in the spectra,the vectors of the gamma-ray energy spectra from Euclidean space,which are fingerprints of the different types of radionuclides,were mapped to matrices in the Banach space.Subsequently,to make the spectra in matrix form easier to apply to image-based deep learning frameworks,the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space.A deep convolutional neural network(DCNN)model was constructed and trained on the ImageNet dataset.The mapped gamma-ray energy spectrum images were applied as inputs to the DCNN model,and the corresponding outputs of the convolution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model for radionuclide identification.The transferred image descriptors consist of global and local features,where the activation vectors of fully connected layers are global features,and activations from convolution layers are local features.A series of comparative experiments between the transferred image descriptors,peak information,features extracted by the histogram of the oriented gradients(HOG),and scale-invariant feature transform(SIFT)using both synthetic and measured data were applied to 11 classical classifiers.The results demonstrate that although the gamma-ray energy spectrum images are completely unfamiliar to the DCNN model and have not been used in the pre-training process,the transferred image descriptors achieved good classification results.The global features have strong semantic information,which achieves an average accuracy of 92.76%and 94.86%on the synthetic dataset and measured dataset,respectively.The results of the statistical comparison of features demonstrate that the proposed approach outperforms the peak-searching-based method,HOG,and SIFT on the synthetic and measured datasets. 展开更多
关键词 Radionuclide identification feature extraction Transfer learning Gamma energy spectrum analysis image descriptor
在线阅读 下载PDF
Effect of MR Field Strength on the Texture Features of Cerebral T2-FLAIR Images: A Pilot Study 被引量:2
12
作者 Xuedan Wang Shiwei Wang +1 位作者 Botao Wang Zhiye Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2020年第3期248-253,共6页
Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were ... Objective To investigate effect of MR field strength on texture features of cerebral T2 fluid attenuated inversion recovery(T2-FLAIR)images.Methods We acquired cerebral 3 D T2-FLAIR images of thirty patients who were diagnosed with ischemic white matter lesion(WML)with MR-1.5 T and MR-3.0 T scanners.Histogram texture features which included mean signal intensity(Mean),Skewness and Kurtosis,and gray level co-occurrence matrix(GLCM)texture features which included angular second moment(ASM),Contrast,Correlation,Inverse difference moment(IDM)and Entropy,of regions of interest located in the area of WML and normal white matter(NWM)were measured by ImageJ software.The texture parameters acquired with MR-1.5 T scanning were compared with MR-3.0 T scanning.Results The Mean of both WML and NWM obtained with MR-1.5 T scanning was significantly lower than that acquired with MR-3.0 T(P<0.001),while Skewness and Kurtosis between MR-1.5 T and MR-3.0 T scanning showed no significant difference(P>0.05).ASM,Correlation and IDM of both WML and NWM acquired with MR-1.5 T revealed significantly lower values than those with MR-3.0 T(P<0.001),while Contrast and Entropy acquired with MR-1.5 T showed significantly higher values than those with MR-3.0 T(P<0.001).Conclusion MR field strength showed no significant effect on histogram textures,while had significant effect on GLCM texture features of cerebral T2-FLAIR images,which indicated that it should be cautious to explain the texture results acquired based on the different MR field strength. 展开更多
关键词 magnetic resonance imaging field strength fluid attenuated inversion recovery white matter texture features
在线阅读 下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
13
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
在线阅读 下载PDF
A Fast Image Matching Algorithm Using a Combination of Line Segment Features 被引量:1
14
作者 FU Runzhe LENG Xuefei +2 位作者 ZHU Yiming LIU Rui HAO Xiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期501-511,共11页
The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,thi... The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements. 展开更多
关键词 image matching NAVIGATION Hough transform Delaunay triangulation combined feature
在线阅读 下载PDF
An image encryption scheme based on three-dimensional Brownian motion and chaotic system 被引量:6
15
作者 Xiu-Li Chai Zhi-Hua Gan +2 位作者 Ke Yuan l Yang Lu Yi-Ran Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期99-113,共15页
At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th... At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed. 展开更多
关键词 image encryption logistic-tent system(LTS) memristive chaotic system three-dimensional(3D) Brownian motion
在线阅读 下载PDF
Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map 被引量:1
16
作者 叶国栋 吴惠山 +1 位作者 黄小玲 Syh-Yuan Tan 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期153-163,共11页
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami... Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8. 展开更多
关键词 three-dimensional improved logistic chaotic map(3D-ILM) Rivest–Shamir–Adleman(RSA)algorithm image encryption CONFUSION ENTROPY
在线阅读 下载PDF
Eyewear-style three-dimensional endoscope derived from microstructured polymer fiber with the function of image transmission
17
作者 孔德鹏 王丽莉 +2 位作者 贺正权 储九荣 马天 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期145-148,共4页
A method of fabricating multi-core polymer image fiber is proposed.Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step.The preform i... A method of fabricating multi-core polymer image fiber is proposed.Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step.The preform is heated and stretched into image fiber with an outer diameter of 2mm.Then a portable eyewear-style three-dimensional(3D) endoscope system is designed,fabricated,and characterized.This endoscopic system is composed of two graded index lenses,two pieces of 0.35-m length image guide fibers,and a pair of oculars.It shows good ?exibility and portability,and can provide the depth information accordingly. 展开更多
关键词 three-dimensional endoscope image fiber POLYMER
在线阅读 下载PDF
Product Image Classification Based on Fusion Features
18
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRLBP) PYRAMID HISTOGRAM of orientated gradients(PHOG) FUSION featureS
在线阅读 下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
19
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
Robustness Evaluation of Remote-Sensing Image Feature Detectors with TH Priori-Information Data Set
20
作者 Yiping Duan Xiaoming Tao +1 位作者 Xijia Liu Ning Ge 《China Communications》 SCIE CSCD 2020年第10期218-228,共11页
In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI... In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI)data set with 2297 remote sensing images serves as a standardized high-resolution data set for studies related to remote-sensing image features.The TPI contains 1)raw and calibrated remote-sensing images with high spatial and temporal resolutions(up to 2 m and 7 days,respectively),and 2)a built-in 3-D target area model that supports view position,view angle,lighting,shadowing,and other transformations.Based on TPI,we further present a quantized approach,including the feature recurrence rate,the feature match score,and the weighted feature robustness score,to evaluate the robustness of remote-sensing image feature detectors.The quantized approach gives general and objective assessments of the robustness of feature detectors under complex remote-sensing circumstances.Three remote-sensing image feature detectors,including scale-invariant feature transform(SIFT),speeded up robust features(SURF),and priori information based robust features(PIRF),are evaluated using the proposed approach on the TPI data set.Experimental results show that the robustness of PIRF outperforms others by over 6.2%. 展开更多
关键词 REMOTE-SENSING TH data set image feature robustness evaluation
在线阅读 下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部