The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation thr...To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.展开更多
Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but a...Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but also impacts on the formation and evolution of the structural belt.To further understand the Zoig(?) Basin, we reprocessed the 0-20.0 s data of the Tangke-Hezuo deep seismic reflection profiles across the majority展开更多
Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quan...Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.展开更多
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu...In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.展开更多
In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have...In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.展开更多
The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur sy...The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.展开更多
The Sangzhi-Shimen synclinorium, which is in the western margin region of the Hunan-Hubei Province and as the southeast part of the middle Yangtze platform, is a second-level tectonics unit in the south of this region...The Sangzhi-Shimen synclinorium, which is in the western margin region of the Hunan-Hubei Province and as the southeast part of the middle Yangtze platform, is a second-level tectonics unit in the south of this region. Along the profile, it can be divided into 5 third-level structure belts. By the comprehensive interpretation of seismic data and magnetotelluric (MT) sounding data, it is found that the surface structure is not in accordance with that of the underground, and this un-coordination can be conducted by many decollement surfaces between the layers. There are three periods of deformation in its geo-history in this region: before the early (Yanshan) stage, during the early Yanshan stage and after the early Yanshan stage, while the main deformation period is during the early (Yanshan) stage. And the mechanism of deformation is the thrust faults in basement, which are controlled by many decollements, in addition to the decollement of the cap-rock.展开更多
When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focu...When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.展开更多
目的:回顾性分析脊柱胸椎前凸患者及正常人群术前影像学及超声心动图资料,探讨并分析胸椎前凸与患者心脏结构及功能的关系。方法:收集并分析2013年1月~2023年12月期间胸椎前凸患者和正常人群的影像学及超声心动图资料。根据胸椎角度将...目的:回顾性分析脊柱胸椎前凸患者及正常人群术前影像学及超声心动图资料,探讨并分析胸椎前凸与患者心脏结构及功能的关系。方法:收集并分析2013年1月~2023年12月期间胸椎前凸患者和正常人群的影像学及超声心动图资料。根据胸椎角度将纳入患者分为两组,A组为胸椎前凸(TL)组(T5-T12≤0°),27例;B组为胸椎后凸(TK)减小组(0°<T5-T12≤20°),29例;另设正常TK(20°<T5-T12≤40°)的C组为对照组,29例。收集三组人群术前临床、影像学及超声心动图资料,包括一般资料[性别、年龄、身高、体重、体重指数(BMI)、体表面积(BSA)],X线片影像学资料(胸椎冠、矢状面Cobb角),顶椎区CT影像学资料[脊柱穿透指数(spinal penetration index volume,SPIV)、顶椎区心脏容积比(cardiac volume ratio in apical vertebra region,CVRA)],超声心动图资料[左心室舒张末期内径(LVDd)、右心室舒张末期内径(RVDd)、左心房内径(LAD)、右心房内径(RAD)、右心室流出道(RVOT)、主动脉内径(AO)、升主动脉内径(AAO)、主肺动脉内径(MPA)、舒张末期室间隔厚度(IVST)、左心室后壁厚度(LVPWT)、射血分数(EF)、缩短分数(FS)、每搏输出量(SV)、心脏输出量(CO)、心脏指数(CI)、肺动脉收缩压(SPAP)]。采用SPSS 25.0统计分析软件对三组人群的上述资料进行统计、比较及相关性分析。结果:SPIV与矢状面Cobb角负相关,与冠状面Cobb角无相关性;SPIV与LVDd、RVDd、LAD、RAD、RVOT、AO、AAO、MPA、IVST、LVPWT呈负相关;SPIV与EF、FS、SV、CO、CI、SPAP无相关性;CVRA与矢状面Cobb角负相关,与冠状面Cobb角无相关性;CVRA与RVDd、IVST、LVPWT负相关;CVRA与LVDd、LAD、RAD、RVOT、AO、AAO、MPA之间无相关性;CVRA与EF、FS、SV、CO、CI、SPAP无相关性。结论:SPIV较CVRA更能反映胸椎前凸对心脏结构和功能的影响,胸椎后凸角度的减小可能加剧心脏血管负担。在胸椎前凸患者矫形手术过程中,由于全麻、俯卧位、胸骨及胸廓受压和肌松药物等因素,胸腔和心腔结构及功能参数可能发生显著变化,应特别关注气道阻塞和血流动力学不稳定的风险。展开更多
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金Project(2005J002) supported by the Foundation of the Science and Technology Section of the Ministry of Railway of China
文摘To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.
文摘Being the core of the Songpan-Ganze block,Zoig(?) Basin is a favorable zone of oil and gas exploration. And it not only is the important deposition area of the northern Songpan-Garze in the Middle-Late Triassic, but also impacts on the formation and evolution of the structural belt.To further understand the Zoig(?) Basin, we reprocessed the 0-20.0 s data of the Tangke-Hezuo deep seismic reflection profiles across the majority
基金Projects(BK20150337,BK20140845,BK20140844)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015Y04)supported by the Transportation Science and Technology Project of Jiangsu Province,China+1 种基金Project(41504081)supported by the National Natural Science Foundation of ChinaProjects(2014M561567,2016T90416)supported by the China Postdoctoral Science Foundation
文摘Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.
文摘In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (11421091)。
文摘In recent years, high-altitude aerostats have been increasingly developed in the direction of multi-functionality and large size. Due to the large size and the high flexibility, new challenges for large aerostats have appeared in the configuration test and the deformation analysis. The methods of the configuration test and the deformation analysis for large airship have been researched and discussed. A tested method of the configuration,named internal scanning, is established to quickly obtain the spatial information of all surfaces for the large airship by the three-dimensional(3D) laser scanning technology. By using the surface wrap method, the configuration parameters of the large airship are calculated. According to the test data of the configuration, the structural dimensions such as the distances between the characteristic sections are measured. The method of the deformation analysis for the airship contains the algorithm of nonuniform rational B-splines(NURBS) and the finite element(FE)method. The algorithm of NURBS is used to obtain the reconfiguration model of the large airship. The seams are considered and the seam areas are divided. The FE model of the middle part of the large airship is established. The distributions of the stress and the strain for the large airship are obtained by the FE method. The position of the larger deformation for the airship is found.
文摘The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.
文摘The Sangzhi-Shimen synclinorium, which is in the western margin region of the Hunan-Hubei Province and as the southeast part of the middle Yangtze platform, is a second-level tectonics unit in the south of this region. Along the profile, it can be divided into 5 third-level structure belts. By the comprehensive interpretation of seismic data and magnetotelluric (MT) sounding data, it is found that the surface structure is not in accordance with that of the underground, and this un-coordination can be conducted by many decollement surfaces between the layers. There are three periods of deformation in its geo-history in this region: before the early (Yanshan) stage, during the early Yanshan stage and after the early Yanshan stage, while the main deformation period is during the early (Yanshan) stage. And the mechanism of deformation is the thrust faults in basement, which are controlled by many decollements, in addition to the decollement of the cap-rock.
基金supported by the National Natural Science Foundation of China(61960206009,61971037,31727901)the Natural Science Foundation of Chongqing+1 种基金China(2020jcyj-jq X0008)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area(ZD2020A0101)。
文摘When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.
文摘目的:回顾性分析脊柱胸椎前凸患者及正常人群术前影像学及超声心动图资料,探讨并分析胸椎前凸与患者心脏结构及功能的关系。方法:收集并分析2013年1月~2023年12月期间胸椎前凸患者和正常人群的影像学及超声心动图资料。根据胸椎角度将纳入患者分为两组,A组为胸椎前凸(TL)组(T5-T12≤0°),27例;B组为胸椎后凸(TK)减小组(0°<T5-T12≤20°),29例;另设正常TK(20°<T5-T12≤40°)的C组为对照组,29例。收集三组人群术前临床、影像学及超声心动图资料,包括一般资料[性别、年龄、身高、体重、体重指数(BMI)、体表面积(BSA)],X线片影像学资料(胸椎冠、矢状面Cobb角),顶椎区CT影像学资料[脊柱穿透指数(spinal penetration index volume,SPIV)、顶椎区心脏容积比(cardiac volume ratio in apical vertebra region,CVRA)],超声心动图资料[左心室舒张末期内径(LVDd)、右心室舒张末期内径(RVDd)、左心房内径(LAD)、右心房内径(RAD)、右心室流出道(RVOT)、主动脉内径(AO)、升主动脉内径(AAO)、主肺动脉内径(MPA)、舒张末期室间隔厚度(IVST)、左心室后壁厚度(LVPWT)、射血分数(EF)、缩短分数(FS)、每搏输出量(SV)、心脏输出量(CO)、心脏指数(CI)、肺动脉收缩压(SPAP)]。采用SPSS 25.0统计分析软件对三组人群的上述资料进行统计、比较及相关性分析。结果:SPIV与矢状面Cobb角负相关,与冠状面Cobb角无相关性;SPIV与LVDd、RVDd、LAD、RAD、RVOT、AO、AAO、MPA、IVST、LVPWT呈负相关;SPIV与EF、FS、SV、CO、CI、SPAP无相关性;CVRA与矢状面Cobb角负相关,与冠状面Cobb角无相关性;CVRA与RVDd、IVST、LVPWT负相关;CVRA与LVDd、LAD、RAD、RVOT、AO、AAO、MPA之间无相关性;CVRA与EF、FS、SV、CO、CI、SPAP无相关性。结论:SPIV较CVRA更能反映胸椎前凸对心脏结构和功能的影响,胸椎后凸角度的减小可能加剧心脏血管负担。在胸椎前凸患者矫形手术过程中,由于全麻、俯卧位、胸骨及胸廓受压和肌松药物等因素,胸腔和心腔结构及功能参数可能发生显著变化,应特别关注气道阻塞和血流动力学不稳定的风险。