期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测 被引量:4
1
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
2
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于DCNN的人脸特征点检测及面部朝向计算 被引量:6
3
作者 郭克友 马丽萍 胡巍 《计算机工程与应用》 CSCD 北大核心 2020年第4期202-208,共7页
在介绍人脸特征点检测的理论知识的基础上,提出了一种基于深层卷积神经网络(Deep Convolutional Neural Network,DCNN)解决人脸5点特征点(眼角、鼻子、嘴角)预测问题的方法。通过添加更多的卷积层稳定地增加网络的深度,并且在所有层中使... 在介绍人脸特征点检测的理论知识的基础上,提出了一种基于深层卷积神经网络(Deep Convolutional Neural Network,DCNN)解决人脸5点特征点(眼角、鼻子、嘴角)预测问题的方法。通过添加更多的卷积层稳定地增加网络的深度,并且在所有层中使用3×3的卷积滤波器,有效减小参数,更好地解决了人脸特征点检测问题。然后计算双眼角与嘴角所成平面与正视时此平面的单应性矩阵,最后利用等效算法求解驾驶员面部转角。实验结果表明,面部特征点检测准确率达到97.96%,算法在角度判断上的误差是1°~5°,这证明了该算法对注意力分散监测的有效性。 展开更多
关键词 深度卷积神经网络(dcnn) 面部特征点检测 卷积层和池化层 驾驶员面部朝向
在线阅读 下载PDF
基于改进CEEMDAN-DCNN的声发射源识别分类方法 被引量:1
4
作者 谢学斌 刘涛 张欢 《黄金科学技术》 CSCD 2022年第2期209-221,共13页
声发射源的准确分类识别是声发射地压监测预报预警研究的重要基础。针对矿山井下围岩体声发射事件信号和采掘作业噪声信号分类识别问题,提出了一种基于改进完备总体经验模态分解和深度卷积神经网络(DCNN)的智能识别分类方法。首先,对信... 声发射源的准确分类识别是声发射地压监测预报预警研究的重要基础。针对矿山井下围岩体声发射事件信号和采掘作业噪声信号分类识别问题,提出了一种基于改进完备总体经验模态分解和深度卷积神经网络(DCNN)的智能识别分类方法。首先,对信号进行改进CEEMDAN降噪处理,即利用相关性系数阈值和排列熵(PE)阈值剔除伪分量和噪声分量;然后,利用DCNN对降噪后的信号自动提取高维特征;最后,将特征用于softmax分类器分类识别,实现智能化井下信号源多分类。研究表明:改进CEEMDAN能够有效剔除伪分量及噪声分量;相比其他机器学习方法,改进CEEMDAN-DCNN方法具有准确率高和稳定性较好等优点。信号源识别分类方法研究为地压监测预警预报提供了重要的基础数据,准确的灾害预警预报可为矿山井下作业人员和设备提供安全保障。 展开更多
关键词 声发射监测 波形分类 信号分类识别 改进CEEMDAN 深度卷积神经网络(dcnn) 排列熵(PE)
在线阅读 下载PDF
基于特征融合进行活动识别的DCNN方法 被引量:2
5
作者 王金甲 杨中玉 《高技术通讯》 CAS CSCD 北大核心 2016年第4期374-380,共7页
研究了输入是可穿戴传感器获得的多通道时间序列信号,输出是预定义的活动的活动识别模型,指出活动中的有效特征的提取目前多依赖于手工和浅层特征学习结构,不仅复杂而且会导致识别准确率下降;基于深度学习的卷积神经网络(CNN)不是对时... 研究了输入是可穿戴传感器获得的多通道时间序列信号,输出是预定义的活动的活动识别模型,指出活动中的有效特征的提取目前多依赖于手工和浅层特征学习结构,不仅复杂而且会导致识别准确率下降;基于深度学习的卷积神经网络(CNN)不是对时间序列信号进行手工特征提取,而是自动学习最优特征;目前使用卷积神经网络处理有限标签数据仍存在过拟合问题。因此提出了一种基于融合特征的系统性的特征学习方法用于活动识别,用Image Net16对原始数据集进行预训练,将得到的数据与原始数据进行融合,并将融合数据和对应的标签送入有监督的深度卷积神经网络(DCNN)中,训练新的系统。在该系统中,特征学习和分类是相互加强的,它不仅能处理端到端的有限数据问题,也能使学习到的特征有更强的辨别力。与其他方法相比,该方法整体精度从87.0%提高到87.4%。 展开更多
关键词 融合特征 多通道时间序列 深度卷积神经网络(dcnn) 活动识别
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
6
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3D-CNN) 深度可分离卷积(DSC) 深度学习
在线阅读 下载PDF
基于改进的DCNN人体行为识别 被引量:5
7
作者 周鹏 袁国良 +1 位作者 张颖 孙莉 《传感器与微系统》 CSCD 北大核心 2021年第10期125-128,共4页
在基于可穿戴传感器的人体行为识别领域中,提取原始数据的有效特征和建立合适的分类模型是提高识别准确率的关键。针对上述问题,提出一种改进的深度卷积神经网络(DCNN)模型,在经典的DCNN模型中增加了信号融合单元,并提出一种将时间序列... 在基于可穿戴传感器的人体行为识别领域中,提取原始数据的有效特征和建立合适的分类模型是提高识别准确率的关键。针对上述问题,提出一种改进的深度卷积神经网络(DCNN)模型,在经典的DCNN模型中增加了信号融合单元,并提出一种将时间序列转换成单通道行为图片的方法,由加速度、角速度和俯仰角信号构成的行为图片在经过信号融合单元处理后,可实现跨通道的信息融合,然后提取行为图片的张量特征,实现对行走、奔跑、坐下、躺下、跌倒、跳跃共6种日常行为的识别。实验表明:该方法在UCI开源数据集上的识别率达到97.05%,高于传统分类模型的识别率。 展开更多
关键词 行为识别 信号融合 深度卷积神经网络(dcnn) 融合深度卷积神经网络(F-dcnn)
在线阅读 下载PDF
基于DCNN的弹道中段目标HRRP图像识别 被引量:10
8
作者 向前 王晓丹 +2 位作者 李睿 来杰 张国令 《系统工程与电子技术》 EI CSCD 北大核心 2020年第11期2426-2433,共8页
针对弹道中段目标识别问题,现有的基于高分辨距离像(high resolution range profile,HRRP)的识别方法直接提取一维HRRP(1-dimension HRRP,1D-HRRP)的整体特征,对局部特征提取能力较弱,且由1D-HRRP数据提取的特征的表达能力有限,为此提... 针对弹道中段目标识别问题,现有的基于高分辨距离像(high resolution range profile,HRRP)的识别方法直接提取一维HRRP(1-dimension HRRP,1D-HRRP)的整体特征,对局部特征提取能力较弱,且由1D-HRRP数据提取的特征的表达能力有限,为此提出了一种基于深度卷积神经网络(deep convolutional neural network,DCNN)的弹道中段目标HRRP图像识别方法。首先,将1D-HRRP转化为0-1二值图像,从而把数值变化特征转化为图像结构特征;然后,构建DCNN逐层提取图像的局部特征和共性特征并进行识别;最后,结合Dropout和L2正则化双重机制缓解DCNN过拟合问题,利用AdaBound算法提高DCNN训练收敛速度和识别正确率。实验结果表明,所提出的基于HRRP图像的弹道中段目标识别方法比其他12种基于1D-HRRP或二维HRRP(2-dimension HRRP,2D-HRRP)的识别方法正确率更高,在测试数据集上达到了96.28%,实验结果验证了该方法的有效性。 展开更多
关键词 弹道导弹 目标识别 高分辨距离像 深度卷积神经网络 AdaBound算法
在线阅读 下载PDF
基于循环频谱相干和DCNN的隔膜泵单向阀故障诊断方法研究 被引量:6
9
作者 冯泽仲 熊新 王晓东 《振动与冲击》 EI CSCD 北大核心 2021年第14期237-244,291,共9页
针对传统的机器学习方法过分依赖特征提取的质量,而深度学习在强干扰条件下其故障辨识率不佳的问题,提出了一种基于循环频谱相干(CSCoh)和深度卷积神经网络(DCNN)的故障诊断方法,并将其应用于实际工况环境下的隔膜泵单向阀故障诊断当中... 针对传统的机器学习方法过分依赖特征提取的质量,而深度学习在强干扰条件下其故障辨识率不佳的问题,提出了一种基于循环频谱相干(CSCoh)和深度卷积神经网络(DCNN)的故障诊断方法,并将其应用于实际工况环境下的隔膜泵单向阀故障诊断当中。对振动信号进行循环平稳特性分析,利用快速循环相关谱计算方法将原始振动信号生成二维CSCoh图;将生成的CSCoh图作为输入从而降低深度诊断模型中特征学习的难度,通过构建DCNN模型,并引入批量归一化和Dropout技术来提升模型的收敛速度和泛化能力;利用所提模型对故障进行分类识别,进而实现单向阀的故障诊断。结果表明,该方法可以准确地识别单向阀的故障类型,并具有较好的泛化性能。 展开更多
关键词 循环频谱相干(CSCoh) 深度卷积神经网络(dcnn) 隔膜泵单向阀 故障诊断
在线阅读 下载PDF
3维卷积递归神经网络的高光谱图像分类方法 被引量:9
10
作者 关世豪 杨桄 +1 位作者 李豪 付严宇 《激光技术》 CAS CSCD 北大核心 2020年第4期485-491,共7页
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信... 为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。 展开更多
关键词 光谱学 高光谱图像分类 3维卷积神经网络 双向循环神经网络 空谱联合特征
在线阅读 下载PDF
基于振动信号融合的ACO-DCNN多工况设备故障诊断 被引量:7
11
作者 韩婷 石宇强 《现代制造工程》 CSCD 北大核心 2021年第9期94-100,共7页
为解决大数据时代人工提取机械故障特征和设定网络参数造成多工况下设备故障诊断精度低的问题,提出了一种基于振动信号融合的蚁群优化深度卷积神经网络(Ant Colony Optimization-Deep Convolutional Neural Networks,ACODCNN)故障诊断... 为解决大数据时代人工提取机械故障特征和设定网络参数造成多工况下设备故障诊断精度低的问题,提出了一种基于振动信号融合的蚁群优化深度卷积神经网络(Ant Colony Optimization-Deep Convolutional Neural Networks,ACODCNN)故障诊断方法。通过融合水平、竖直方向振动信号,确保不同位置信息的互补性;运用ACO算法自适应优化DCNN参数,利用深度学习强大的特征自提取和复杂映射表征能力进行故障判别。实例验证结果表明:与BP神经网络和标准DCNN相比,ACO-DCNN在多工况下平均故障诊断精度高达99.15%,该模型收敛速度较快且具有较强的泛化能力,可有效地实现多工况设备故障诊断。 展开更多
关键词 故障诊断 蚁群优化算法 深度卷积神经网络 特征提取 深度学习
在线阅读 下载PDF
基于DCNN特征与集成学习的车型分类算法 被引量:3
12
作者 李大湘 王小雨 《计算机工程与设计》 北大核心 2020年第6期1624-1628,共5页
针对传统人工设计特征描述不充分及单分类器泛化能力弱等问题,提出一种基于深度卷积神经网络(DCNN)特征与集成学习相结合的车型分类算法。微调VGG16深度卷积神经网络模型,将全连接层Fc7输出的4096维矢量采用PCA方法降至100维,作为图像... 针对传统人工设计特征描述不充分及单分类器泛化能力弱等问题,提出一种基于深度卷积神经网络(DCNN)特征与集成学习相结合的车型分类算法。微调VGG16深度卷积神经网络模型,将全连接层Fc7输出的4096维矢量采用PCA方法降至100维,作为图像的特征表示;采用拉格朗日支持向量机(LSVM)作为基分类器,以Adaboost方法自动学习各样本及基分类器的权重实现分类器集成。基于BIT和MIO-TCD数据集的对比实验结果表明,平均分类精度分别达到84.5%与83%,优于其它传统特征与单分类器方法。 展开更多
关键词 深度卷积神经网络 集成学习 车型分类 拉格朗日支持向量机 提升算法
在线阅读 下载PDF
利用卷积神经网络对GF-3输电塔的检测与分类 被引量:4
13
作者 孙震笙 柳鹏 +2 位作者 余涛 杨健 米晓飞 《遥感信息》 CSCD 北大核心 2019年第5期88-97,共10页
高压输电塔廊道的快速、大范围监测能力对于国家能源安全战略至关重要。合成孔径雷达遥感技术以其全天时、全天候、穿透能力强等众多优势能够为区域电力基础设施监测提供稳定数据源。但由于复杂的成像机理和大量相干斑噪声的影响,SAR数... 高压输电塔廊道的快速、大范围监测能力对于国家能源安全战略至关重要。合成孔径雷达遥感技术以其全天时、全天候、穿透能力强等众多优势能够为区域电力基础设施监测提供稳定数据源。但由于复杂的成像机理和大量相干斑噪声的影响,SAR数据的快速智能解译存在一定的困难。为此,提出一个基于深度卷积神经网络的输电塔快速识别分类算法框架。利用我国首颗C频段多极化合成孔径雷达高分三号数据,结合目标检测网络自动标注构建RAD-GFEP输电塔数据集,然后采用基于卷积神经网络的分类算法对该样本集进行分类测试。结果表明,基于深度卷积神经网络的分类算法能够对复杂背景场下SAR微小目标精准识别。在输电塔数据集RAD-GFEP上分类的总体精度达到了98.21%,混淆矩阵的Kappa系数值为0.9729,该结果远远优于传统的视觉算法。研究也表明了国产星载SAR较好的成像能力和利用其进行广域输电塔发现、识别和分类的可行性,在电力基础设施规划、建设、维护和灾后评估等方面展现出了巨大的应用前景。 展开更多
关键词 深度卷积神经网络 目标识别 输电塔 合成孔径雷达 高分三号
在线阅读 下载PDF
基于DBLSTM-DCNN的骨导和气导语音转换
14
作者 储有亮 李梁 《声学技术》 CSCD 北大核心 2021年第6期815-821,共7页
为了解决人们在强噪声环境下,通过空气途径传递的语音信号会严重失真的问题,提出了一种基于深层双向长短期记忆-深度卷积神经网络(Deep Bidirectional Long and Short Term Memory-Deep Convolutional Neural Network,DBLSTM-DCNN)的骨... 为了解决人们在强噪声环境下,通过空气途径传递的语音信号会严重失真的问题,提出了一种基于深层双向长短期记忆-深度卷积神经网络(Deep Bidirectional Long and Short Term Memory-Deep Convolutional Neural Network,DBLSTM-DCNN)的骨导语音转气导语音的语音转换模型。该模型利用DBLSTM层收集和保存相邻连续帧的隐藏信息,再通过DCNN层来提取频域方面的特征信息,可以很好地解决由于骨导语音高频成份严重缺失导致的转换语音不够自然的问题。实验结果表明,该模型的语音质量感知评价(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、对数谱距离(Log-spectral Distance,LSD)等客观评价指标均有良好的表现,证明了该模型在骨导语音转气导语音方面具有较好的转换效果。 展开更多
关键词 语音转换 深层卷积神经网络(dcnn) 深层双向长短期记忆网络(DBLSTM)
在线阅读 下载PDF
基于多尺度时空注意力网络的微表情检测方法 被引量:6
15
作者 于洋 孙芳芳 +2 位作者 吕华 李扬 王晓民 《计算机工程》 CAS CSCD 北大核心 2024年第6期228-235,共8页
微表情可以揭示人们试图隐藏的真实情绪,为刑事侦查、心理辅导等提供潜在的信息。现有微表情检测方法主要在获取空间特征的基础上提取时间特征以构建时空特征,这种处理方式容易导致时间特征失真,同时在空间处理过程中会破坏原有时序关系... 微表情可以揭示人们试图隐藏的真实情绪,为刑事侦查、心理辅导等提供潜在的信息。现有微表情检测方法主要在获取空间特征的基础上提取时间特征以构建时空特征,这种处理方式容易导致时间特征失真,同时在空间处理过程中会破坏原有时序关系,降低微表情时空特征的判别性。针对这一问题,提出基于多尺度时空注意力网络的微表情检测方法。利用包含时间和空间关系的三维卷积神经网络(3DCNN)对微表情序列进行处理,获取兼顾时间域和空间域的鲁棒性特征。构建多尺度时间输入序列,从不同时间长度的图像序列中提取多维时间特征,采用轻量级3DCNN提取多尺度时空特征,利用全局时空注意力模块(GSAM)对时空特征进行全局性时空关联加强,其中时空重组模块用于加强不同时刻图像帧之间的连通性,全局信息关注模块构建单帧图像上的空间关联信息,最后对不同时刻的特征赋予权重以突出关键时间信息,有效完成微表情检测工作。实验结果表明,该方法可以准确检测出微表情序列片段,在CASME、CASME II和SAMM公开数据集上的准确率分别达到92.32%、95.04%和89.56%,相比目前最优的深度学习方法LGAttNet,所提方法在CASME II和SAMM数据集上的准确率分别提高了3.84和4.96个百分点。 展开更多
关键词 微表情检测 三维卷积神经网络 时空特征 多尺度特征 关联性
在线阅读 下载PDF
基于块编码特点的压缩视频质量增强算法 被引量:1
16
作者 于海 杨磊 +4 位作者 高阳 刘枫琪 刘鹏宇 孙萱 张悦 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1069-1076,共8页
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强... 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding, HEVC)标准H.265,所提算法在低延迟(low delay, LD)配置下且量化参数(quantization parameter, QP)为37时,峰值信噪比(peak signal-to-noise ratio, PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference, DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network, MGANet)方法,该算法PSNR的增长量提升了15.1%。 展开更多
关键词 视频编码 高效视频编码(high efficiency video coding HEVC) 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network CNN) 三维卷积神经网络(3D convolutional neural network 3D-CNN)
在线阅读 下载PDF
融合人脸图像深度和外观特征的BMI估计方法
17
作者 向成豪 郑秀娟 +1 位作者 庄嘉良 张畅 《传感器与微系统》 CSCD 北大核心 2024年第1期135-138,144,共5页
身体质量指数(BMI)是人类健康重要指标。从2D正脸图像中估计3D人脸信息并提出一个端到端BMI估计框架,以进一步提高BMI估计性能。首先,计算人脸468个3D关键点,并根据关键点相对头部质心的深度绘制深度人脸图;其次,提取人脸图像的方向梯... 身体质量指数(BMI)是人类健康重要指标。从2D正脸图像中估计3D人脸信息并提出一个端到端BMI估计框架,以进一步提高BMI估计性能。首先,计算人脸468个3D关键点,并根据关键点相对头部质心的深度绘制深度人脸图;其次,提取人脸图像的方向梯度直方图(HOG)并可视化以表示外观特征;最后,利用卷积神经网络(CNN)VGGNet、ResNet分别对深度人脸图和HOG进行特征提取,并使用Hadamard积融合2个骨干网络的特征以估计BMI。与目前已有方法的对比实验中,本文提出方法在2个公开数据集上的整体平均绝对误差(MAE)分别比最优结果低0.38和1。上述实验结果证明了本文提出的融合3D人脸图像深度和外观特征的BMI估计方法的有效性。 展开更多
关键词 身体质量指数估计 人脸3D关键点 人脸网格模型 方向梯度直方图 深度卷积神经网络
在线阅读 下载PDF
利用深度卷积神经网络提高未知噪声下的语音增强性能 被引量:39
18
作者 袁文浩 孙文珠 +1 位作者 夏斌 欧世峰 《自动化学报》 EI CSCD 北大核心 2018年第4期751-759,共9页
为了进一步提高基于深度学习的语音增强方法在未知噪声下的性能,本文从神经网络的结构出发展开研究.基于在时间与频率两个维度上,语音和噪声信号的局部特征都具有强相关性的特点,采用深度卷积神经网络(Deep convolutional neural networ... 为了进一步提高基于深度学习的语音增强方法在未知噪声下的性能,本文从神经网络的结构出发展开研究.基于在时间与频率两个维度上,语音和噪声信号的局部特征都具有强相关性的特点,采用深度卷积神经网络(Deep convolutional neural network,DCNN)建模来表示含噪语音和纯净语音之间的复杂非线性关系.通过设计有效的训练特征和训练目标,并建立合理的网络结构,提出了基于深度卷积神经网络的语音增强方法.实验结果表明,在未知噪声条件下,本文方法相比基于深度神经网络(Deep neural network,DNN)的方法在语音质量和可懂度两种指标上都有明显提高. 展开更多
关键词 语音增强 深度卷积神经网络 深度神经网络 噪声
在线阅读 下载PDF
基于深度卷积神经网络的场景自适应道路分割算法 被引量:19
19
作者 王海 蔡英凤 +2 位作者 贾允毅 陈龙 江浩斌 《电子与信息学报》 EI CSCD 北大核心 2017年第2期263-269,共7页
现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和Gentle B... 现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和Gentle Boost的方法,实现了带标签置信度样本的在线选取;其次,利用深度卷积神经网络(DCNN)深度结构的特征自动抽取能力,辅以特征自编码器对源-目标场景下特征相似度度量,提出了一种采用复合深度结构的场景自适应分类器模型并设计了训练方法。在KITTI测试库的测试结果表明,所提算法较现有非场景自适应道路分割算法具有较大的优越性,在检测率上平均提升约4.5%。 展开更多
关键词 道路分割 场景自适应 深度卷积神经网络 复合深度结构 自编码器
在线阅读 下载PDF
基于深度卷积神经网络的快速图像分类算法 被引量:26
20
作者 王华利 邹俊忠 +2 位作者 张见 卫作臣 汪春梅 《计算机工程与应用》 CSCD 北大核心 2017年第13期181-188,共8页
为了应对大量图像的分类问题,提出一种基于深度卷积神经网络和CUDA-cuDNN并行运算的快速图像分类方法。该方法利用深度卷积神经网络自动学习特征的优势来解决手工设计特征普适性差等问题,同时结合基于CUDA架构的cuDNN并行运算策略来提... 为了应对大量图像的分类问题,提出一种基于深度卷积神经网络和CUDA-cuDNN并行运算的快速图像分类方法。该方法利用深度卷积神经网络自动学习特征的优势来解决手工设计特征普适性差等问题,同时结合基于CUDA架构的cuDNN并行运算策略来提高训练速度和加快分类速度,并且针对深度卷积神经网络易受参数扰动等缺点,引入批量正则化(Batch Normalization)以提高算法的鲁棒性。实验结果表明,该方法不仅大幅缩短了训练时间同时加快了图像的分类速度,而且进一步降低了图像分类的错误率。 展开更多
关键词 深度卷积神经网络 CUDA-cuDNN方法 批量正则化 图像分类 深度学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部