Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, wh...An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, which become increasingly tighter for the matching criteria, the method tries to successively terminate unnecessary computations of the matching criteria between the reference block in one image and the ineligible candidate blocks in another image.It also eliminates the ineligible blocks as early as possible, while ensuring the optimal disparity of each pixel.Also, the proposed method can further speed up the elimination of ineligible candidate blocks by efficiently using the continuous constraint of disparity to predict the initial disparity of each pixel.The performance of the new algorithm is evaluated by carrying out a theoretical analysis, and by comparing its performance with the disparity estimation method based on the standard block matching.Simulated results demonstrate that the proposed algorithm achieves a computational cost reduction of over 50.5% in comparision with the standard block matching method.展开更多
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis...Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.展开更多
为应对红外气体泄漏成像过程中因设备转动等因素导致的图像不稳定及泄漏气体检测效果不佳的问题,提出1种结合图像帧子块匹配法和改进快速鲁棒模糊C均值算法(fast and robust fuzzy c-means,FRFCM)的红外图像细节增强方法。该方法利用图...为应对红外气体泄漏成像过程中因设备转动等因素导致的图像不稳定及泄漏气体检测效果不佳的问题,提出1种结合图像帧子块匹配法和改进快速鲁棒模糊C均值算法(fast and robust fuzzy c-means,FRFCM)的红外图像细节增强方法。该方法利用图像帧子块匹配法配准图像帧,同时引入背景建模和差分方法从背景中分离动态气体目标,并在FRFCM基础上增加自适应调整模糊因子以优化图像帧的羽流强化特征效果。研究结果表明:该方法能够有效去除冗余信息,使图像帧匹配误差降低约75%,对比度增强值提高4.7%,羽流分割的平均交并比达到0.68,在保持较高分割准确度的同时显著提升检测速度,适用于油气田、集输站及氢气站等气体安全检测系统。研究结果可为气体泄漏监测技术的优化与应用提供参考。展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new...Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.展开更多
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
基金supported by the Opening Project of State Key Laboratory for Manufacturing Systems EngineeringFoundation for Youth Teacher of School of Mechanical Engineering, Xi’an Jiaotong University Brain Korea 21(BK21) Program of Ministry of Education and Human Resources Development
文摘An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, which become increasingly tighter for the matching criteria, the method tries to successively terminate unnecessary computations of the matching criteria between the reference block in one image and the ineligible candidate blocks in another image.It also eliminates the ineligible blocks as early as possible, while ensuring the optimal disparity of each pixel.Also, the proposed method can further speed up the elimination of ineligible candidate blocks by efficiently using the continuous constraint of disparity to predict the initial disparity of each pixel.The performance of the new algorithm is evaluated by carrying out a theoretical analysis, and by comparing its performance with the disparity estimation method based on the standard block matching.Simulated results demonstrate that the proposed algorithm achieves a computational cost reduction of over 50.5% in comparision with the standard block matching method.
基金This work was supported by the Equipment Pre-Research Foundation of China(6140001020310).
文摘Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.
文摘为应对红外气体泄漏成像过程中因设备转动等因素导致的图像不稳定及泄漏气体检测效果不佳的问题,提出1种结合图像帧子块匹配法和改进快速鲁棒模糊C均值算法(fast and robust fuzzy c-means,FRFCM)的红外图像细节增强方法。该方法利用图像帧子块匹配法配准图像帧,同时引入背景建模和差分方法从背景中分离动态气体目标,并在FRFCM基础上增加自适应调整模糊因子以优化图像帧的羽流强化特征效果。研究结果表明:该方法能够有效去除冗余信息,使图像帧匹配误差降低约75%,对比度增强值提高4.7%,羽流分割的平均交并比达到0.68,在保持较高分割准确度的同时显著提升检测速度,适用于油气田、集输站及氢气站等气体安全检测系统。研究结果可为气体泄漏监测技术的优化与应用提供参考。
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
基金Project(60202005) supported by the National Natural Science Foundation of China
文摘Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.