期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Three-dimensional simulation of sintering crunodes of metal powders or fibers by level set method 被引量:1
1
作者 谌东东 郑洲顺 +2 位作者 王建忠 汤慧萍 曲选辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2446-2455,共10页
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio... The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms. 展开更多
关键词 metal fiber metal powder sintering crunodes mean curvature three-dimensional simulation
在线阅读 下载PDF
IF signals simulation of three-dimensional radar
2
作者 Zhang Wei Wang Xuegang Zhu Zhaoda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期486-492,共7页
Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of freq... Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of frequencyphase scanning 3-D radar is presented. The IF signals model of different channels of 3-D radar is presented in one simple formula in which complex waveform effects are considered. The simulation results obtained during tests are also provided in the end. 展开更多
关键词 simulation three-dimensional radar IF signal frequency-phase scanning.
在线阅读 下载PDF
Probabilistic seismic stability of three-dimensional slopes by pseudo-dynamic approach 被引量:10
3
作者 PAN Qiu-jing QU Xing-ru WANG Xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1687-1695,共9页
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl... Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach. 展开更多
关键词 seismic slope stability pseudo-dynamic analysis probabilistic analysis Monte-Carlo simulation failure probability three-dimensional slop
在线阅读 下载PDF
Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation 被引量:6
4
作者 杨敏 孙庆 +1 位作者 李卫超 马亢 《Journal of Central South University》 SCIE EI CAS 2011年第3期909-916,共8页
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu... A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect. 展开更多
关键词 finite element analysis TUNNELLING pile foundation three-dimensional simulation displacement controlled model
在线阅读 下载PDF
Pre-reinforcement grout in fractured rock masses and numerical simulation for optimizing shrinkage stoping configuration 被引量:6
5
作者 YU Shao-feng WU Ai-xiang +1 位作者 WANG Yi-ming LI Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2924-2931,共8页
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,wh... Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,which needs much reinforcement and support prior to mining.Cement-sodium silicate grout technology was selected,then its related parameters such as grout pressure,diffusion radius and time were calculated and proposed.In order to test the effect of the pressured grout in the fractured No.4 ore block,field experiments were conducted.To optimize stoping configuration,three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed.The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously.After grout,ore recovery rate is increased by 10.2%employing the newly designed stoping configuration compared with the previous.Last,analyzed from the surface movements,roof subsidence and the maximum principal stress of the pillars,the mining safety is probable of being ensured. 展开更多
关键词 shrinkage stoping mining cement-sodium silicate grout effect of pressured grout stoping configuration three-dimensional numerical simulation
在线阅读 下载PDF
Micromechanical modeling of asphalt concrete fracture using a user-defined three-dimensional discrete element method 被引量:4
6
作者 陈俊 汪林兵 黄晓明 《Journal of Central South University》 SCIE EI CAS 2012年第12期3595-3602,共8页
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F... A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength. 展开更多
关键词 asphalt concrete fracture behavior MICROMECHANICS discrete element method three-dimensional simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部