As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m...As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.展开更多
Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide ran...Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide range of applications in fields such as virtual reality,augmented reality,indoor navigation,and game development.Existing methods based on multi-view RGB images have made significant progress in 3D reconstruction.These image-based reconstruction methods not only possess good expressive power and generalization performance,but also handle complex geometric shapes and textures effectively.Despite facing challenges such as lighting variations,occlusion,and texture loss in indoor scenes,these challenges can be effectively addressed through deep neural networks,neural implicit surface representations,and other techniques.The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future.It not only provides immersive and interactive virtual experiences but also brings convenience and innovation to indoor navigation,interior design,and virtual tours.As the technology evolves,these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor scene reconstruction.展开更多
This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identific...This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identification and characterization system(AMICS) and large-area splicing of SEM images to characterize and classify the microscopic storage space distribution patterns and 3D pore structures of shales in the second member of the Paleogene Kongdian Formation(Kong 2) in the Cangdong Sag of the Bohai Bay Basin. It is shown that:(1) The Kong 2 Member can be divided into seven types according to the distribution patterns of reservoir spaces: felsic shale with intergranular micron pores, felsic shale with intergranular fissures, felsic shale with intergranular pores, hybrid shale with intergranular pores and fissures, hybrid shale with intergranular pores, clay-bearing dolomitic shale with intergranular pores, and clay-free dolomitic shale with intergranular pores.(2) The reservoir of the intergranular fracture type has better storage capacity than that of intergranular pore type. For reservoirs with storage space of intergranular pore type, the dolomitic shale reservoir has the best storage capacity, the hybrid shale comes second, followed by the felsic shale.(3) The felsic shale with intergranular fissures has the best storage capacity and percolation structure, making it the first target in shale oil exploration.(4) The large volume FIB-SEM 3D reconstruction method is able to characterize a large shale volume while maintaining relatively high spatial resolution, and has been demonstrated an effective method in characterizing the 3D storage space in strongly heterogeneous continental shales.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat...In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.展开更多
A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction ma...A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.展开更多
To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,...To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin ...We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.展开更多
Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabric...Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.展开更多
To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic displ...To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.展开更多
Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and si...A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.展开更多
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the National Natural Science Foundation of China(No.11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02).
文摘As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.
基金supported by ZTE Industry University Institute Cooperation Funds under Grant No.HCCN20221102002.
文摘Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide range of applications in fields such as virtual reality,augmented reality,indoor navigation,and game development.Existing methods based on multi-view RGB images have made significant progress in 3D reconstruction.These image-based reconstruction methods not only possess good expressive power and generalization performance,but also handle complex geometric shapes and textures effectively.Despite facing challenges such as lighting variations,occlusion,and texture loss in indoor scenes,these challenges can be effectively addressed through deep neural networks,neural implicit surface representations,and other techniques.The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future.It not only provides immersive and interactive virtual experiences but also brings convenience and innovation to indoor navigation,interior design,and virtual tours.As the technology evolves,these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor scene reconstruction.
基金Science Fund of China National Natural Science Foundation for Creative Research Groups(41821002)the 14(th)Five-Year Plan Major Project of Pilot National Laboratory for Marine Science and Technology(2021QNLM020001)the Dagang Oil Field Company Project(DQYT-2019-JS-365)。
文摘This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identification and characterization system(AMICS) and large-area splicing of SEM images to characterize and classify the microscopic storage space distribution patterns and 3D pore structures of shales in the second member of the Paleogene Kongdian Formation(Kong 2) in the Cangdong Sag of the Bohai Bay Basin. It is shown that:(1) The Kong 2 Member can be divided into seven types according to the distribution patterns of reservoir spaces: felsic shale with intergranular micron pores, felsic shale with intergranular fissures, felsic shale with intergranular pores, hybrid shale with intergranular pores and fissures, hybrid shale with intergranular pores, clay-bearing dolomitic shale with intergranular pores, and clay-free dolomitic shale with intergranular pores.(2) The reservoir of the intergranular fracture type has better storage capacity than that of intergranular pore type. For reservoirs with storage space of intergranular pore type, the dolomitic shale reservoir has the best storage capacity, the hybrid shale comes second, followed by the felsic shale.(3) The felsic shale with intergranular fissures has the best storage capacity and percolation structure, making it the first target in shale oil exploration.(4) The large volume FIB-SEM 3D reconstruction method is able to characterize a large shale volume while maintaining relatively high spatial resolution, and has been demonstrated an effective method in characterizing the 3D storage space in strongly heterogeneous continental shales.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 12375226)the National Magnetic Confinement Fusion Program of China(No.2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
文摘A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
基金supported by the National Natural Science Foundation of China(Grant No.11374036)the National Basic Research Program of China(Grant No.2012CB821403)
文摘We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0200400 and 2016YFA0200800)the National Natural Science Foundation of China(Grant Nos.61888102,12074420,and 11674387)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)Key Research Program of Frontier Sciences,Chinese Acdemy of Sciences(Grant No.QYZDJ-SSWSLH042).
文摘Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.
文摘To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
基金Supported by the National Natural Science Foundation of China(52005500)Foundation of Tianjin Educational Committee(2018KJ242)Basic Science-Research Funds of National University(3122019088)。
文摘A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.