Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)proc...Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)procedure.This can be very important in defense-related applications,where optimum performance needs to be guaranteed.The quality of the Polyetherimide 3D-P specimens was examined by considering six control parameters,namely,infill percentage,layer height,deposition angle,travel speed,nozzle,and bed temperature.The quality indicators were the root mean square(Rq)and average(Ra)roughness,porosity,and the actual to nominal dimensional deviation.The examination was performed with optical profilometry,optical microscopy,and micro-computed tomography scanning.The Taguchi design of experiments was applied,with twenty-five runs,five levels for each control parameter,on five replicas.Two additional confirmation runs were conducted,to ensure reliability.Prediction equations were constructed to express the quality indicators in terms of the control parameters.Three modeling approaches were applied to the experimental data,to compare their efficiency,i.e.,Linear Regression Model(LRM),Reduced Quadratic Regression Model,and Quadratic Regression Model(QRM).QRM was the most accurate one,still the differences were not high even considering the simpler LRM model.展开更多
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimen...Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.展开更多
Immobilization devices may be a valuable aid to ensure the improved effectiveness of radiotherapy treatments where constraining the movements of specific anatomical segments is crucial. This need is also present in ot...Immobilization devices may be a valuable aid to ensure the improved effectiveness of radiotherapy treatments where constraining the movements of specific anatomical segments is crucial. This need is also present in other situations, specifically when the superposition of various medical images is required for fine identification and characterization of some pathologies. Because of their structural characteristics, existing head immobilization systems may be claustrophobic and very uncomfortable for patients, during both the modeling and usage stages. Because of this, it is important to minimize all the discomforts related to the mask to alleviate patients’ distress and to simultaneously guarantee and maximize the restraint effectiveness of the mask. In the present work, various head immobilization mask models are proposed based on geometrical information extracted from computerized tomography images and from 3D laser scanning point clouds. These models also consider the corresponding connection to a radiotherapy table, as this connection is easily altered to accommodate various manufacturers’ solutions. A set of materials used in the radiotherapy field is considered to allow the assessment of the stiffness and strength of the masks when submitted to typical loadings.展开更多
3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geo...3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.展开更多
Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important con...Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate an...On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.展开更多
Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 1...Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.展开更多
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com...This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.展开更多
In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of prot...In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.展开更多
In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by u...In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.展开更多
Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide req...Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.展开更多
As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the b...As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.展开更多
Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error...Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast...One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
文摘Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)procedure.This can be very important in defense-related applications,where optimum performance needs to be guaranteed.The quality of the Polyetherimide 3D-P specimens was examined by considering six control parameters,namely,infill percentage,layer height,deposition angle,travel speed,nozzle,and bed temperature.The quality indicators were the root mean square(Rq)and average(Ra)roughness,porosity,and the actual to nominal dimensional deviation.The examination was performed with optical profilometry,optical microscopy,and micro-computed tomography scanning.The Taguchi design of experiments was applied,with twenty-five runs,five levels for each control parameter,on five replicas.Two additional confirmation runs were conducted,to ensure reliability.Prediction equations were constructed to express the quality indicators in terms of the control parameters.Three modeling approaches were applied to the experimental data,to compare their efficiency,i.e.,Linear Regression Model(LRM),Reduced Quadratic Regression Model,and Quadratic Regression Model(QRM).QRM was the most accurate one,still the differences were not high even considering the simpler LRM model.
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
文摘Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.
基金supported by the Project IPL/2016/Soft Imob/ISEL and Project LAETA—UID/EMS/50022/2019
文摘Immobilization devices may be a valuable aid to ensure the improved effectiveness of radiotherapy treatments where constraining the movements of specific anatomical segments is crucial. This need is also present in other situations, specifically when the superposition of various medical images is required for fine identification and characterization of some pathologies. Because of their structural characteristics, existing head immobilization systems may be claustrophobic and very uncomfortable for patients, during both the modeling and usage stages. Because of this, it is important to minimize all the discomforts related to the mask to alleviate patients’ distress and to simultaneously guarantee and maximize the restraint effectiveness of the mask. In the present work, various head immobilization mask models are proposed based on geometrical information extracted from computerized tomography images and from 3D laser scanning point clouds. These models also consider the corresponding connection to a radiotherapy table, as this connection is easily altered to accommodate various manufacturers’ solutions. A set of materials used in the radiotherapy field is considered to allow the assessment of the stiffness and strength of the masks when submitted to typical loadings.
基金Project 2001AA135170 supported by the National High-Tech Research and Development (863) Program of China and 06ZR14031 by the Natural ScienceFoundation of Shanghai Municipality
文摘3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFC2900500)the National Natural Science Foundation of China(Nos.52074020 and 42202306)+2 种基金the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.WPUKFJJ2019-06)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21001)the Natural Science Foundation of Jiangsu Province,China(No.BK20200993).
文摘Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金supported by the Key Projects of the National Science Foundation of China(Nos.52178190,52078250,11832013)
文摘On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.
文摘Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.
基金This work was supported by China Postdoctoral Science Foundation(No.2022M723391)the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)+1 种基金the Central Guiding Local Science and Technology Development Fund Project(No.YDZJSX2021B021)Shanxi Province Basic Research Plan General Project(No.202203021221294).
文摘This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.
基金Projects 59904001 supported by National Natural Science Foundation of China
文摘In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.
基金supported in part by“MOST”under Grants No.102-2632-E-216-001-MY3 and No.104-2221-E-216-010-MY2
文摘In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.
文摘Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.
文摘As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.
基金provided by the Talent Training Project of the National Natural Science Foundation of China (No.J0730534)the National Natural Science Foundation of China (No.40902093)+1 种基金the Morning Light Plan of the Shanghai Educational Development Foundation (No.2007CG34)the Open Foundation of the Shanghai Key Laboratory of Urbanization and Ecological Restoration (No.200803)
文摘Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.
文摘One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.