A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced eff...A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.展开更多
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejec...It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs ne...With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.展开更多
A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PI...A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PIλDμ controller generally has three advantages when compared to the integerl-order controller: the first is that it has more degrees of freedom in the model; the second is that it has a memory in model,the memory insure the history and its impact to present and future,the third is it ensures the stability of missile. This approach provides a more flexible tuning strategy and therefore an easier achieving of control requirements. Flight dynamic model of an aerodynamic missile is taken into account in implementing the PIλDμ controller. Simulation results show that the PIλDμ controller is not sensitive to the changes of control parameters and the system parameters. Also,the controller has more flexible structure and stronger robustness.展开更多
The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-fun...The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.展开更多
This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatl...This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.展开更多
文摘A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of PetroleumMinerals (KFUPM) for funding this work through project number 11-ENE1643-04 as part of the Notional Science Technology and Innovation Plan
文摘It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
文摘With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.
文摘A new type of PID controller is introduced and some properties are given. The novelty of the proposed controller consists in the extension of derivation and integration order from integer to non-integer order. The PIλDμ controller generally has three advantages when compared to the integerl-order controller: the first is that it has more degrees of freedom in the model; the second is that it has a memory in model,the memory insure the history and its impact to present and future,the third is it ensures the stability of missile. This approach provides a more flexible tuning strategy and therefore an easier achieving of control requirements. Flight dynamic model of an aerodynamic missile is taken into account in implementing the PIλDμ controller. Simulation results show that the PIλDμ controller is not sensitive to the changes of control parameters and the system parameters. Also,the controller has more flexible structure and stronger robustness.
文摘The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.
文摘This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.