针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置...针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置更新策略来平衡算法的全局搜索能力和局部搜索能力;然后,使用随机指导策略来增加解的多样性;最后,使用B样条曲线平滑所生成的飞行路径,使路径更适用于无人机。实验结果表明,PSO-GWO复合算法可以生成一条安全可行的路径,其性能明显优于GWO算法和其他改进GWO算法。展开更多
文摘针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置更新策略来平衡算法的全局搜索能力和局部搜索能力;然后,使用随机指导策略来增加解的多样性;最后,使用B样条曲线平滑所生成的飞行路径,使路径更适用于无人机。实验结果表明,PSO-GWO复合算法可以生成一条安全可行的路径,其性能明显优于GWO算法和其他改进GWO算法。