To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif...To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.展开更多
Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with ot...Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.展开更多
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout...Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.展开更多
The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and m...The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and must be avoided in the forming and service stages of components,have attracted much attention of researchers. In this paper,the fracture behavior and laws of spinning components such as conical parts,tubular parts,and components with inner ribs are summarized,the typical coupled and uncoupled ductile fracture models are introduced,and their applications in spinning are analyzed. Meanwhile,the recent developments on the modified ductile fracture model in analyzing damage and fracture mechanisms of spinning are emphatically introduced. The results could provide guidance for the selection and establishment of appropriate ductile fracture models in the finite element simulation for the accurate prediction and analysis of fracture moment,location,form,damage mechanism,and evolution law,and help the development of precision spinning techniques for high-performance thin-walled complex components.展开更多
The aim of this study was to analyze the physicochemical and structural characteristics of the Venn components of wheat gliadin to provide theoretical basis of gliadin for processing in dough and Chinese steamed bread...The aim of this study was to analyze the physicochemical and structural characteristics of the Venn components of wheat gliadin to provide theoretical basis of gliadin for processing in dough and Chinese steamed bread. Eight Venn components, Gli-8, Gli-9, Gli-10, Gli-11, Gli-12, Gli-13, Gli-14, and Gli-15, were extracted from wheat gliadin based on their solubility. The results of physicochemical characteristics showed that the differences in the contents, TDS,electrical conductivity, particle size and zeta potential of Venn components were significant, respectively. The content of Gli-15 in gliadin was the highest, and the content of Gli-9 was the lowest. The TDS value of Gli-9 was the highest(336.0), and the TDS value of Gli-15 was the lowest(52.0). The electrical conductivity of Gli-9 was the highest,which was 7.54 times the lowest value of Gli-11. The zeta potential of Gli-9 was -25.2 mV, and the zeta potential of the Gli-15 was -7.64 mV. However, the difference in the p H values was not significant. The results of UV spectrum and FTIR analysis showed that the secondary structures of the Venn components had significant differences. The results of the XRD patterns indicated that the Venn components might not be a single substance. The results of CLSM images implied that the molecular interactions among the components were varied. Hence, the results could provide research materials and basic data for deep processing and utilization of gliadin.展开更多
A knowledge-based system in structural component design based on fracture mechanics is developed in this paper. The system consists of several functional parts: a general inference engine, a set of knowledge bases and...A knowledge-based system in structural component design based on fracture mechanics is developed in this paper. The system consists of several functional parts: a general inference engine, a set of knowledge bases and data-bases, an interpretation engine, a bases administration system and the interface. It can simulate a human expert to make analysis and design scheme mainly for four kinds of typical structural components widely used in shipbuilding industry: pressure vessels, huge rotation constructions, pump-rod and welded structures. It is an open system which may be broadened and perfected to cover a wider range of engineering application through the modification and enlargement of knowledge bases and data-bases. It has a natural and friendly interface that may be easily operated. An on-line help service is also provided.展开更多
This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamp...This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.展开更多
In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R...In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m^3/s pumping rate at a pressure of 10^-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m^2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 ℃. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.展开更多
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a...Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.展开更多
For a more accurate and comprehensive assessment of the trustworthiness of component-based soft- ware system, the fuzzy analytic hierarchy process is introduced to establish the analysis model. Combine qualitative and...For a more accurate and comprehensive assessment of the trustworthiness of component-based soft- ware system, the fuzzy analytic hierarchy process is introduced to establish the analysis model. Combine qualitative and quantitative analyses, the impacts to overall trustworthiness by the different types of components are distinguished. Considering the coupling relationship between components, dividing the system into several layers from target layer to scheme layer, evaluating the scheme advantages disadvantages by group decision-making, the trustworthiness of a typical J2EE structured component-based software is assessed. The trustworthiness asses model of the software components provides an effective methods of operation.展开更多
Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, shi...Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.展开更多
文摘To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042 and 11505114)the Shanghai Project for Construction of Top Disciplines (Grant No. USST-SYS-01)。
文摘Detecting coupling pattern between elements in a complex system is a basic task in data-driven analysis. The trajectory for each specific element is a cooperative result of its intrinsic dynamic, its couplings with other elements, and the environment. It is subsequently composed of many components, only some of which take part in the couplings. In this paper we present a framework to detect the component correlation pattern. Firstly, the interested trajectories are decomposed into components by using decomposing methods such as the Fourier expansion and the Wavelet transformation. Secondly, the cross-correlations between the components are calculated, resulting into a component cross-correlation matrix(network).Finally, the dominant structure in the network is identified to characterize the coupling pattern in the system. Several deterministic dynamical models turn out to be characterized with rich structures such as the clustering of the components. The pattern of correlation between respiratory(RESP) and ECG signals is composed of five sub-clusters that are mainly formed by the components in ECG signal. Interestingly, only 7 components from RESP(scattered in four sub-clusters) take part in the realization of coupling between the two signals.
基金supported by the National Natural Science Foundation of China(No.51375396)the Shaanxi Science and Technology Innovation Project Plan,China(No.2016KTCQ01-50)
文摘Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.
基金National Science and Technology Major Project(J2019-VII-0014-0154)the Key Project of National Natural Science Foundation of China(No.52130507)+1 种基金National Natural Science Foundation of China(No.51790175)National Key R&D Program of China(Nos.2020YFA0711100 and 2021YFB3400900)。
文摘The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and must be avoided in the forming and service stages of components,have attracted much attention of researchers. In this paper,the fracture behavior and laws of spinning components such as conical parts,tubular parts,and components with inner ribs are summarized,the typical coupled and uncoupled ductile fracture models are introduced,and their applications in spinning are analyzed. Meanwhile,the recent developments on the modified ductile fracture model in analyzing damage and fracture mechanisms of spinning are emphatically introduced. The results could provide guidance for the selection and establishment of appropriate ductile fracture models in the finite element simulation for the accurate prediction and analysis of fracture moment,location,form,damage mechanism,and evolution law,and help the development of precision spinning techniques for high-performance thin-walled complex components.
基金The authors thanks for the financial support of the National Key Research and Development Program(2016YFD0400203)the National Natural Science Foundation of China(Project No.31771897,31871852,and 31772023).
文摘The aim of this study was to analyze the physicochemical and structural characteristics of the Venn components of wheat gliadin to provide theoretical basis of gliadin for processing in dough and Chinese steamed bread. Eight Venn components, Gli-8, Gli-9, Gli-10, Gli-11, Gli-12, Gli-13, Gli-14, and Gli-15, were extracted from wheat gliadin based on their solubility. The results of physicochemical characteristics showed that the differences in the contents, TDS,electrical conductivity, particle size and zeta potential of Venn components were significant, respectively. The content of Gli-15 in gliadin was the highest, and the content of Gli-9 was the lowest. The TDS value of Gli-9 was the highest(336.0), and the TDS value of Gli-15 was the lowest(52.0). The electrical conductivity of Gli-9 was the highest,which was 7.54 times the lowest value of Gli-11. The zeta potential of Gli-9 was -25.2 mV, and the zeta potential of the Gli-15 was -7.64 mV. However, the difference in the p H values was not significant. The results of UV spectrum and FTIR analysis showed that the secondary structures of the Venn components had significant differences. The results of the XRD patterns indicated that the Venn components might not be a single substance. The results of CLSM images implied that the molecular interactions among the components were varied. Hence, the results could provide research materials and basic data for deep processing and utilization of gliadin.
基金Heilongjiang Natural Science Foundation of China(E9803).
文摘A knowledge-based system in structural component design based on fracture mechanics is developed in this paper. The system consists of several functional parts: a general inference engine, a set of knowledge bases and data-bases, an interpretation engine, a bases administration system and the interface. It can simulate a human expert to make analysis and design scheme mainly for four kinds of typical structural components widely used in shipbuilding industry: pressure vessels, huge rotation constructions, pump-rod and welded structures. It is an open system which may be broadened and perfected to cover a wider range of engineering application through the modification and enlargement of knowledge bases and data-bases. It has a natural and friendly interface that may be easily operated. An on-line help service is also provided.
基金The experimental program would not have been possible without the funding by the 100-Year Foundation of the Federation of Finnish Technology Industries and the Scientific Advisory Board for Defense.The analyses were carried out in project called Ultra Lightweight and Fracture Resistant Thin-Walled Structures through Optimization of Strain Paths,by the Academy of Finland(310828).This work was also supported by the Estonian Research Council grant PSG526.
文摘This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.
基金JSPS-CAS Core-University Program on Basic Research of Nuclear Fusion Reactor Engineering in 2007
文摘In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m^3/s pumping rate at a pressure of 10^-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m^2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 ℃. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.
文摘Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
基金Sponsored by the National High Technology Research and Development Program of China ("863"Program) (2009AA01Z433)
文摘For a more accurate and comprehensive assessment of the trustworthiness of component-based soft- ware system, the fuzzy analytic hierarchy process is introduced to establish the analysis model. Combine qualitative and quantitative analyses, the impacts to overall trustworthiness by the different types of components are distinguished. Considering the coupling relationship between components, dividing the system into several layers from target layer to scheme layer, evaluating the scheme advantages disadvantages by group decision-making, the trustworthiness of a typical J2EE structured component-based software is assessed. The trustworthiness asses model of the software components provides an effective methods of operation.
基金This study was supported by National 9th-Five-Year Plan Project (No. 96-011-02-07-02).
文摘Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.